Project acronym CASINO
Project Carbohydrate signals controlling nodulation
Researcher (PI) Jens Stougaard Jensen
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), LS3, ERC-2010-AdG_20100317
Summary Mechanisms governing interaction between multicellular organisms and microbes are central for understanding pathogenesis, symbiosis and the function of ecosystems. We propose to address these mechanisms by pioneering an interdisciplinary approach for understanding cellular signalling, response processes and organ development. The challenge is to determine factors synchronising three processes, organogenesis, infection thread formation and bacterial infection, running in parallel to build a root nodule hosting symbiotic bacteria. We aim to exploit the unique possibilities for analysing endocytosis of bacteria in model legumes and to develop genomic, genetic and biological chemistry tools to break new ground in our understanding of carbohydrates in plant development and plant-microbe interaction. Surface exposed rhizobial polysaccharides play a crucial but poorly understood role in infection thread formation and rhizobial invasion resulting in endocytosis. We will undertake an integrated functional characterisation of receptor-ligand mechanisms mediating recognition of secreted polysaccharides and subsequent signal amplification. So far progress in this field has been limited by the complex nature of carbohydrate polymers, lack of a suitable experimental model system where both partners in an interaction could be manipulated and lack of corresponding methods for carbohydrate synthesis, analysis and interaction studies. In this context our legume model system and the discovery that the legume Nod-factor receptors recognise bacterial lipochitin-oligosaccharide signals at their LysM domains provides a new opportunity. Combined with advanced bioorganic chemistry and nanobioscience approaches this proposal will engage the above mentioned limitations.
Summary
Mechanisms governing interaction between multicellular organisms and microbes are central for understanding pathogenesis, symbiosis and the function of ecosystems. We propose to address these mechanisms by pioneering an interdisciplinary approach for understanding cellular signalling, response processes and organ development. The challenge is to determine factors synchronising three processes, organogenesis, infection thread formation and bacterial infection, running in parallel to build a root nodule hosting symbiotic bacteria. We aim to exploit the unique possibilities for analysing endocytosis of bacteria in model legumes and to develop genomic, genetic and biological chemistry tools to break new ground in our understanding of carbohydrates in plant development and plant-microbe interaction. Surface exposed rhizobial polysaccharides play a crucial but poorly understood role in infection thread formation and rhizobial invasion resulting in endocytosis. We will undertake an integrated functional characterisation of receptor-ligand mechanisms mediating recognition of secreted polysaccharides and subsequent signal amplification. So far progress in this field has been limited by the complex nature of carbohydrate polymers, lack of a suitable experimental model system where both partners in an interaction could be manipulated and lack of corresponding methods for carbohydrate synthesis, analysis and interaction studies. In this context our legume model system and the discovery that the legume Nod-factor receptors recognise bacterial lipochitin-oligosaccharide signals at their LysM domains provides a new opportunity. Combined with advanced bioorganic chemistry and nanobioscience approaches this proposal will engage the above mentioned limitations.
Max ERC Funding
2 399 127 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym EURECA
Project Eukaryotic Regulated RNA Catabolism
Researcher (PI) Torben Heick Jensen
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary "Regulation and fidelity of gene expression is fundamental to the differentiation and maintenance of all living organisms. While historically attention has been focused on the process of transcriptional activation, we predict that RNA turnover pathways are equally important for gene expression regulation. This has been implied for selected protein-coding RNAs (mRNAs) but is virtually unexplored for non-protein-coding RNAs (ncRNAs).
The intention of the EURECA proposal is to establish cutting-edge research to characterize mammalian nuclear RNA turnover; its factor utility, substrate specificity and regulatory capacity. We foresee that RNA turnover is at the core of gene expression regulation - forming intricate connection to RNA productive systems – thus, being centrally placed to determine RNA fate. EURECA seeks to dramatically improve our understanding of cellular decision processes impacting RNA levels and to establish models for how regulated RNA turnover helps control key biological processes.
The realization that the number of ncRNA producing genes was previously grossly underestimated foretells that ncRNA regulation will impact on most aspects of cell biology. Consistently, aberrant ncRNA levels correlate with human disease phenotypes and RNA turnover complexes are linked to disease biology. Still, solid models for how ncRNA turnover regulate biological processes in higher eukaryotes are not available. Moreover, which ncRNAs retain function and which are merely transcriptional by-products remain a major challenge to sort out. The circumstances and kinetics of ncRNA turnover are therefore important to delineate as these will ultimately relate to the likelihood of molecular function. A fundamental challenge here is to also discern which protein complements of non-coding ribonucleoprotein particles (ncRNPs) are (in)compatible with function. Balancing single transcript/factor analysis with high-throughput methodology, EURECA will address these questions."
Summary
"Regulation and fidelity of gene expression is fundamental to the differentiation and maintenance of all living organisms. While historically attention has been focused on the process of transcriptional activation, we predict that RNA turnover pathways are equally important for gene expression regulation. This has been implied for selected protein-coding RNAs (mRNAs) but is virtually unexplored for non-protein-coding RNAs (ncRNAs).
The intention of the EURECA proposal is to establish cutting-edge research to characterize mammalian nuclear RNA turnover; its factor utility, substrate specificity and regulatory capacity. We foresee that RNA turnover is at the core of gene expression regulation - forming intricate connection to RNA productive systems – thus, being centrally placed to determine RNA fate. EURECA seeks to dramatically improve our understanding of cellular decision processes impacting RNA levels and to establish models for how regulated RNA turnover helps control key biological processes.
The realization that the number of ncRNA producing genes was previously grossly underestimated foretells that ncRNA regulation will impact on most aspects of cell biology. Consistently, aberrant ncRNA levels correlate with human disease phenotypes and RNA turnover complexes are linked to disease biology. Still, solid models for how ncRNA turnover regulate biological processes in higher eukaryotes are not available. Moreover, which ncRNAs retain function and which are merely transcriptional by-products remain a major challenge to sort out. The circumstances and kinetics of ncRNA turnover are therefore important to delineate as these will ultimately relate to the likelihood of molecular function. A fundamental challenge here is to also discern which protein complements of non-coding ribonucleoprotein particles (ncRNPs) are (in)compatible with function. Balancing single transcript/factor analysis with high-throughput methodology, EURECA will address these questions."
Max ERC Funding
2 497 960 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym INNODYN
Project Integrated Analysis & Design in Nonlinear Dynamics
Researcher (PI) Jakob Soendergaard Jensen
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary Imagine lighter and more fuel economic cars with improved crashworthiness that help save lives, aircrafts and wind-turbine blades with significant weight reductions that lead to large savings in material costs and environmental impact, and light but efficient armour that helps to protect against potentially deadly blasts. These are the future perspectives with a new generation of advanced structures and micro-structured materials.
The goal of INNODYN is to bring current design procedures for structures and materials a significant step forward by developing new efficient procedures for integrated analysis and design taking the nonlinear dynamic performance into account. The assessment of nonlinear dynamic effects is essential for fully exploiting the vast potentials of structural and material capabilities, but a focused endeavour is strongly required to develop the methodology required to reach the ambitious goals.
INNODYN will in two interacting work-packages develop the necessary computational analysis and design tools using
1) reduced-order models (WP1) that enable optimization of the overall topology of structures which is today hindered by excessive computational costs when dealing with nonlinear dynamic systems
2) multi-scale models (WP2) that facilitates topological design of the material microstructure including essential nonlinear geometrical effects currently not included in state-of-the-art methods.
The work will be carried out by a research group with two PhD-students and a postdoc, led by a PI with a track-record for original ground-breaking research in analysis and optimization of linear and nonlinear dynamics and hosted by one of the world's leading research groups on topology optimization, the TOPOPT group at the Technical University of Denmark.
Summary
Imagine lighter and more fuel economic cars with improved crashworthiness that help save lives, aircrafts and wind-turbine blades with significant weight reductions that lead to large savings in material costs and environmental impact, and light but efficient armour that helps to protect against potentially deadly blasts. These are the future perspectives with a new generation of advanced structures and micro-structured materials.
The goal of INNODYN is to bring current design procedures for structures and materials a significant step forward by developing new efficient procedures for integrated analysis and design taking the nonlinear dynamic performance into account. The assessment of nonlinear dynamic effects is essential for fully exploiting the vast potentials of structural and material capabilities, but a focused endeavour is strongly required to develop the methodology required to reach the ambitious goals.
INNODYN will in two interacting work-packages develop the necessary computational analysis and design tools using
1) reduced-order models (WP1) that enable optimization of the overall topology of structures which is today hindered by excessive computational costs when dealing with nonlinear dynamic systems
2) multi-scale models (WP2) that facilitates topological design of the material microstructure including essential nonlinear geometrical effects currently not included in state-of-the-art methods.
The work will be carried out by a research group with two PhD-students and a postdoc, led by a PI with a track-record for original ground-breaking research in analysis and optimization of linear and nonlinear dynamics and hosted by one of the world's leading research groups on topology optimization, the TOPOPT group at the Technical University of Denmark.
Max ERC Funding
823 992 €
Duration
Start date: 2012-02-01, End date: 2016-01-31
Project acronym M4D
Project Metal Microstructures in Four Dimensions
Researcher (PI) Dorte JUUL JENSEN
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary The goals are:
1) to develop a universal laboratory-based 4D X-ray microscope with potentials in the broad field of materials science and beyond;
2) to advance metal research by quantifying local microstructural variations using the new 4D tool and by including the effects hereof in the understanding and modelling of industrially relevant metals.
Today, high resolution 4D (x,y,z,time) crystallographic characterization of materials is possible only at large international facilities. This is a serious limitation preventing the common use. The new technique will allow such 4D characterization to be carried out at home laboratories, thereby wide spreading this powerful tool.
Whereas current metal research mainly focuses on average properties, local microstructural variations are present in all metals on several length scales, and are often of critical importance for the properties and performance of the metal. In this project, the new technique will be the cornerstone in studies of such variations in three types of metallic materials: 3D printed, multilayered and micrometre-scale metals. Effects of local variations on the subsequent microstructural evolution will be followed during deformation and annealing, i.e. during processes typical for manufacturing, and occurring during in-service operation.
Current models largely ignore the presence of local microstructural variations and lack predictive power. Based on the new experimental data, three models operating on different length scales will be improved and combined, namely crystal plasticity finite element, phase field and molecular dynamics models. The main novelty here relates to the full 4D validation of the models, which has not been possible hitherto because of lack of sufficient experimental data.
The resulting fundamental understanding of the inherent microstructural variations and the new models are foreseen to be an integral part of the future design of metallic materials for high performance applications.
Summary
The goals are:
1) to develop a universal laboratory-based 4D X-ray microscope with potentials in the broad field of materials science and beyond;
2) to advance metal research by quantifying local microstructural variations using the new 4D tool and by including the effects hereof in the understanding and modelling of industrially relevant metals.
Today, high resolution 4D (x,y,z,time) crystallographic characterization of materials is possible only at large international facilities. This is a serious limitation preventing the common use. The new technique will allow such 4D characterization to be carried out at home laboratories, thereby wide spreading this powerful tool.
Whereas current metal research mainly focuses on average properties, local microstructural variations are present in all metals on several length scales, and are often of critical importance for the properties and performance of the metal. In this project, the new technique will be the cornerstone in studies of such variations in three types of metallic materials: 3D printed, multilayered and micrometre-scale metals. Effects of local variations on the subsequent microstructural evolution will be followed during deformation and annealing, i.e. during processes typical for manufacturing, and occurring during in-service operation.
Current models largely ignore the presence of local microstructural variations and lack predictive power. Based on the new experimental data, three models operating on different length scales will be improved and combined, namely crystal plasticity finite element, phase field and molecular dynamics models. The main novelty here relates to the full 4D validation of the models, which has not been possible hitherto because of lack of sufficient experimental data.
The resulting fundamental understanding of the inherent microstructural variations and the new models are foreseen to be an integral part of the future design of metallic materials for high performance applications.
Max ERC Funding
2 496 519 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym MatMech
Project Live Tapings of Material Formation: Unravelling formation mechanisms in materials chemistry through Multimodal X-ray total scattering studies
Researcher (PI) Kirsten Marie oernsbjerg Jensen
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary With this proposal, I want to develop a new, multimodal approach to in situ X-ray scattering studies to unravel formation mechanisms of the solid state. The aim of the project is to develop a unified view of metal oxide nucleation processes on the atomic scale: From precursor complexes over pre-nucelation clusters to the final crystalline particle.
The development of new materials relies on our understanding of the relation between material structure, properties and synthesis. While the intense focus on ‘materials by design’ have made it possible to predict the properties of many materials given an atomic arrangement, actually knowing how to synthesize it is a completely different story. Material synthesis methods are to a large degree developed by extensive parameter studies based on trial-and-error experiments. Specifically, our knowledge of particle nucleation is lacking, as even non-classical views on nucleation such as the concept of pre-nucleation clusters do not apply an atomistic view of the formation process. Here, I want to use new methods in X-ray total scattering and Pair Distribution Function analysis to follow nucleation processes to establish the framework needed for predictive material synthesis. One of the large challenges in studying nucleation is the lack of a characterization method that can give structural information on materials without long-range order. I have demonstrated that time-resolved X-ray total scattering gives new possibilities for following structural changes in a synthesis, and the use of total scattering has opened for a new view on material formation. However, the complexity of the structures involved in nucleation processes is too large to obtain sufficient information from X-ray total scattering alone. Here, I will combine X-ray total scattering data with complementary techniques using a new multimodal approach for complex modelling analysis, providing a unifying view on material nucleation.
Summary
With this proposal, I want to develop a new, multimodal approach to in situ X-ray scattering studies to unravel formation mechanisms of the solid state. The aim of the project is to develop a unified view of metal oxide nucleation processes on the atomic scale: From precursor complexes over pre-nucelation clusters to the final crystalline particle.
The development of new materials relies on our understanding of the relation between material structure, properties and synthesis. While the intense focus on ‘materials by design’ have made it possible to predict the properties of many materials given an atomic arrangement, actually knowing how to synthesize it is a completely different story. Material synthesis methods are to a large degree developed by extensive parameter studies based on trial-and-error experiments. Specifically, our knowledge of particle nucleation is lacking, as even non-classical views on nucleation such as the concept of pre-nucleation clusters do not apply an atomistic view of the formation process. Here, I want to use new methods in X-ray total scattering and Pair Distribution Function analysis to follow nucleation processes to establish the framework needed for predictive material synthesis. One of the large challenges in studying nucleation is the lack of a characterization method that can give structural information on materials without long-range order. I have demonstrated that time-resolved X-ray total scattering gives new possibilities for following structural changes in a synthesis, and the use of total scattering has opened for a new view on material formation. However, the complexity of the structures involved in nucleation processes is too large to obtain sufficient information from X-ray total scattering alone. Here, I will combine X-ray total scattering data with complementary techniques using a new multimodal approach for complex modelling analysis, providing a unifying view on material nucleation.
Max ERC Funding
1 493 269 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym PHYRIST
Project Physiological roles of the Ribotoxic Stress Response
Researcher (PI) Simon Holst BEKKER-JENSEN
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Consolidator Grant (CoG), LS4, ERC-2019-COG
Summary The ribotoxic stress response (RSR) surveys the structural and functional integrity of ribosomes and is triggered by diverse groups of ribotoxins (e.g. ricin), UV irradiation and some chemotherapeutics. When presented with impaired ribosomes, the proximal MAPKKK ZAK activates MAP kinases p38 and JNK to initiate a powerful inflammatory response. This signalling contributes to the detrimental reactions to ribotoxins and fatal side effects of cancer therapy. However, despite decades of research into the RSR, the physiological relevance of the underlying pathway in whole organisms is unknown. I hypothesize that the RSR constitutes a general translation quality control pathway and hence I aim to uncover the physiological and pathological implications of RSR impairment in mice and nematodes.
In one line of investigation, I will elucidate the connections between UV radiation and RSR-mediated p38 activation. I hypothesize that this signalling pathway is critical for sunlight-induced skin inflammation and development of skin cancers of different cellular origins. Rewardingly, we found that cells from our ZAK knockout (KO) mice are refractory to UV-induced p38 activation, which is a significant contributor to skin cancer development. My team has also observed deregulation of protein translation in RSR-deficient human and mouse cells, and a reduced lifespan of ZAK KO nematodes. Thus encouraged, I will determine the impact of the RSR pathway on cancer development and aging processes in mice, and I will unravel the molecular connections between defective ribosomes, RSR activation and regulation of translation. Finally, I am in a unique position to evaluate the RSR as a putative drug target and I will investigate the potential of ZAK inhibition to treat or prevent skin cancer, and to remedy inflammation arising from infection with ribotoxin-producing bacteria. In sum, PHYRIST will yield the first detailed insight into the in vivo relevance of the ribotoxic stress response.
Summary
The ribotoxic stress response (RSR) surveys the structural and functional integrity of ribosomes and is triggered by diverse groups of ribotoxins (e.g. ricin), UV irradiation and some chemotherapeutics. When presented with impaired ribosomes, the proximal MAPKKK ZAK activates MAP kinases p38 and JNK to initiate a powerful inflammatory response. This signalling contributes to the detrimental reactions to ribotoxins and fatal side effects of cancer therapy. However, despite decades of research into the RSR, the physiological relevance of the underlying pathway in whole organisms is unknown. I hypothesize that the RSR constitutes a general translation quality control pathway and hence I aim to uncover the physiological and pathological implications of RSR impairment in mice and nematodes.
In one line of investigation, I will elucidate the connections between UV radiation and RSR-mediated p38 activation. I hypothesize that this signalling pathway is critical for sunlight-induced skin inflammation and development of skin cancers of different cellular origins. Rewardingly, we found that cells from our ZAK knockout (KO) mice are refractory to UV-induced p38 activation, which is a significant contributor to skin cancer development. My team has also observed deregulation of protein translation in RSR-deficient human and mouse cells, and a reduced lifespan of ZAK KO nematodes. Thus encouraged, I will determine the impact of the RSR pathway on cancer development and aging processes in mice, and I will unravel the molecular connections between defective ribosomes, RSR activation and regulation of translation. Finally, I am in a unique position to evaluate the RSR as a putative drug target and I will investigate the potential of ZAK inhibition to treat or prevent skin cancer, and to remedy inflammation arising from infection with ribotoxin-producing bacteria. In sum, PHYRIST will yield the first detailed insight into the in vivo relevance of the ribotoxic stress response.
Max ERC Funding
1 997 678 €
Duration
Start date: 2020-06-01, End date: 2025-05-31
Project acronym PLEDGEDEM
Project Pledges in democracy
Researcher (PI) Carsten JENSEN
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Consolidator Grant (CoG), SH2, ERC-2018-COG
Summary Election pledges are supposedly a vital part of representative democracy. Yet we do not in fact know whether and how pledges matter for vote choice and accountability. This project thus asks: Do election pledges matter for voters’ democratic behavior and beliefs?
The role of pledges in citizens’ democratic behavior and beliefs is, surprisingly, virtually unexplored. This project’s ambition is therefore to create a new research agenda that redefines how political scientists think about the link between parties and voters. The project not only advances the research frontier by introducing a new, crucial phenomenon for political scientists to study; it also breaks new ground because it provides original theoretical and methodological tools for this new research agenda.
The key empirical contribution of this project is to collect two path-breaking datasets in the United States, France, and Norway that produce an unbiased estimate of voters’ awareness and use of pledges. The first consists of a set of innovative panel surveys with embedded conjoint experiments conducted both before and after national elections. The second dataset codes all pledges; whether or not they are broken; and how the mass media report on them.
This project is unique in its scientific ambition: It studies the core mechanism of representative democracy as it happens in real time, and does so in several countries. If successful, we will have much firmer knowledge about how voters select parties that best represent them and sanction those that betray their trust – and what this all implies for people’s trust in democracy.
Summary
Election pledges are supposedly a vital part of representative democracy. Yet we do not in fact know whether and how pledges matter for vote choice and accountability. This project thus asks: Do election pledges matter for voters’ democratic behavior and beliefs?
The role of pledges in citizens’ democratic behavior and beliefs is, surprisingly, virtually unexplored. This project’s ambition is therefore to create a new research agenda that redefines how political scientists think about the link between parties and voters. The project not only advances the research frontier by introducing a new, crucial phenomenon for political scientists to study; it also breaks new ground because it provides original theoretical and methodological tools for this new research agenda.
The key empirical contribution of this project is to collect two path-breaking datasets in the United States, France, and Norway that produce an unbiased estimate of voters’ awareness and use of pledges. The first consists of a set of innovative panel surveys with embedded conjoint experiments conducted both before and after national elections. The second dataset codes all pledges; whether or not they are broken; and how the mass media report on them.
This project is unique in its scientific ambition: It studies the core mechanism of representative democracy as it happens in real time, and does so in several countries. If successful, we will have much firmer knowledge about how voters select parties that best represent them and sanction those that betray their trust – and what this all implies for people’s trust in democracy.
Max ERC Funding
1 999 255 €
Duration
Start date: 2019-08-01, End date: 2025-01-31
Project acronym StemHealth
Project Foetal Intestinal Stem Cells in Biology and Health
Researcher (PI) Kim Bak Jensen
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Consolidator Grant (CoG), LS7, ERC-2015-CoG
Summary There is currently no medical cure for the millions of individuals affected by inflammatory bowel disease (IBD). These patients suffer from bleeding along the gastrointestinal tract due to epithelial ulceration, which causes severe abdominal pain, diarrhoea and malnutrition. This is due to the severely compromised integrity of the intestinal epithelium. I propose that patients with IBD will benefit from an intestinal epithelial transplant.
The objectives of this research programme are two fold. Firstly, I propose to perform preclinical testing of human intestinal epithelium to pave the way for their inclusion in clinical trials for IBD patients. This will be based on a combination of state-of-the-art cell culture methods with novel transplantation methodology. By combining analysis of intestinal epithelial cells from various developmental stages, I will be able to identify the most suitable source for transplantation and define how adult stem cells are specified in the tissue. Secondly, I will utilise an in vitro culture system to identify the transcriptional networks responsible for the maturation of the foetal intestinal epithelium. Tissue maturation currently constitutes a major roadblock in regenerative medicine as cells derived from foetal and pluripotent stem cells have foetal properties. Understanding this process will therefore improve our ability to generate sustainable sources of cells for transplantation, which is pivotal for future therapies relying on regenerative medicine and in vitro modelling of disease
The proposed research programme will have significant clinical and biological impact. Clinically, it provides the framework for initiating clinical trials for patients with IBD and protocols to obtain mature adult epithelium for in vitro disease modelling. From a biological perspective, we will gain insights into how specific signalling networks maintain specific cell states and dictate tissue maturation.
Summary
There is currently no medical cure for the millions of individuals affected by inflammatory bowel disease (IBD). These patients suffer from bleeding along the gastrointestinal tract due to epithelial ulceration, which causes severe abdominal pain, diarrhoea and malnutrition. This is due to the severely compromised integrity of the intestinal epithelium. I propose that patients with IBD will benefit from an intestinal epithelial transplant.
The objectives of this research programme are two fold. Firstly, I propose to perform preclinical testing of human intestinal epithelium to pave the way for their inclusion in clinical trials for IBD patients. This will be based on a combination of state-of-the-art cell culture methods with novel transplantation methodology. By combining analysis of intestinal epithelial cells from various developmental stages, I will be able to identify the most suitable source for transplantation and define how adult stem cells are specified in the tissue. Secondly, I will utilise an in vitro culture system to identify the transcriptional networks responsible for the maturation of the foetal intestinal epithelium. Tissue maturation currently constitutes a major roadblock in regenerative medicine as cells derived from foetal and pluripotent stem cells have foetal properties. Understanding this process will therefore improve our ability to generate sustainable sources of cells for transplantation, which is pivotal for future therapies relying on regenerative medicine and in vitro modelling of disease
The proposed research programme will have significant clinical and biological impact. Clinically, it provides the framework for initiating clinical trials for patients with IBD and protocols to obtain mature adult epithelium for in vitro disease modelling. From a biological perspective, we will gain insights into how specific signalling networks maintain specific cell states and dictate tissue maturation.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-08-01, End date: 2022-07-31
Project acronym WATERUNDERTHEICE
Project Where is the water under the Greenland ice sheet?
Researcher (PI) Dorthe Dahl-Jensen
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), PE10, ERC-2009-AdG
Summary Recent analysis of radar-depth sounder data has shown that many areas of the Greenland ice sheet have melt water under the base. The extent of the wet base and distribution of melt water are poorly known. Also lakes under the ice have not been discovered in contrast with those in Antarctica. The effect of the water beneath the ice, however, is well documented: it lubricates the bed and removes the friction between the basal ice and underlying bedrock. The ice with a wet bed flows faster, reacts rapidly to changes in climate and the basal-melt water contributes to the fresh-water supply to the ocean from the Greenland ice sheet. The primary objectives of the project are to map melt water extent of the Greenland ice sheet and its impact by tracing internal layers and analyzing bedrock returns from airborne radio-echo sounding data, and use mapping results in conjunction with ice-sheet and hydrostatic models for the movement of the basal water to predict the ice-sheet s response to climate change. The information derived from deep ice-cores that reach the bed will be used to constrain models. We will also study the basal material (dust, DNA and microbiological material) and bedrock properties from the deep-ice core sites. This will add a further dimension to the study and provide opportunities to look for life under the ice and constrain the age of the Greenland ice sheet. The proposed research is a high risk project because of the difficulty in accessing basal conditions under 3-km of ice with a potential for high payoff science. The team will consist of scientists and engineers with expertise in the palaeoclimate, radar sounding and signal processing, and ice-sheet models.
Summary
Recent analysis of radar-depth sounder data has shown that many areas of the Greenland ice sheet have melt water under the base. The extent of the wet base and distribution of melt water are poorly known. Also lakes under the ice have not been discovered in contrast with those in Antarctica. The effect of the water beneath the ice, however, is well documented: it lubricates the bed and removes the friction between the basal ice and underlying bedrock. The ice with a wet bed flows faster, reacts rapidly to changes in climate and the basal-melt water contributes to the fresh-water supply to the ocean from the Greenland ice sheet. The primary objectives of the project are to map melt water extent of the Greenland ice sheet and its impact by tracing internal layers and analyzing bedrock returns from airborne radio-echo sounding data, and use mapping results in conjunction with ice-sheet and hydrostatic models for the movement of the basal water to predict the ice-sheet s response to climate change. The information derived from deep ice-cores that reach the bed will be used to constrain models. We will also study the basal material (dust, DNA and microbiological material) and bedrock properties from the deep-ice core sites. This will add a further dimension to the study and provide opportunities to look for life under the ice and constrain the age of the Greenland ice sheet. The proposed research is a high risk project because of the difficulty in accessing basal conditions under 3-km of ice with a potential for high payoff science. The team will consist of scientists and engineers with expertise in the palaeoclimate, radar sounding and signal processing, and ice-sheet models.
Max ERC Funding
2 499 999 €
Duration
Start date: 2010-01-01, End date: 2015-12-31