Project acronym Amygdala Circuits
Project Amygdala Circuits for Appetitive Conditioning
Researcher (PI) Andreas Luthi
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Country Switzerland
Call Details Advanced Grant (AdG), LS5, ERC-2014-ADG
Summary The project outlined here addresses the fundamental question how the brain encodes and controls behavior. While we have a reasonable understanding of the role of entire brain areas in such processes, and of mechanisms at the molecular and synaptic levels, there is a big gap in our knowledge of how behavior is controlled at the level of defined neuronal circuits.
In natural environments, chances for survival depend on learning about possible aversive and appetitive outcomes and on the appropriate behavioral responses. Most studies addressing the underlying mechanisms at the level of neuronal circuits have focused on aversive learning, such as in Pavlovian fear conditioning. Understanding how activity in defined neuronal circuits mediates appetitive learning, as well as how these circuitries are shared and interact with aversive learning circuits, is a central question in the neuroscience of learning and memory and the focus of this grant application.
Using a multidisciplinary approach in mice, combining behavioral, in vivo and in vitro electrophysiological, imaging, optogenetic and state-of-the-art viral circuit tracing techniques, we aim at dissecting the neuronal circuitry of appetitive Pavlovian conditioning with a focus on the amygdala, a key brain region important for both aversive and appetitive learning. Ultimately, elucidating these mechanisms at the level of defined neurons and circuits is fundamental not only for an understanding of memory processes in the brain in general, but also to inform a mechanistic approach to psychiatric conditions associated with amygdala dysfunction and dysregulated emotional responses including anxiety and mood disorders.
Summary
The project outlined here addresses the fundamental question how the brain encodes and controls behavior. While we have a reasonable understanding of the role of entire brain areas in such processes, and of mechanisms at the molecular and synaptic levels, there is a big gap in our knowledge of how behavior is controlled at the level of defined neuronal circuits.
In natural environments, chances for survival depend on learning about possible aversive and appetitive outcomes and on the appropriate behavioral responses. Most studies addressing the underlying mechanisms at the level of neuronal circuits have focused on aversive learning, such as in Pavlovian fear conditioning. Understanding how activity in defined neuronal circuits mediates appetitive learning, as well as how these circuitries are shared and interact with aversive learning circuits, is a central question in the neuroscience of learning and memory and the focus of this grant application.
Using a multidisciplinary approach in mice, combining behavioral, in vivo and in vitro electrophysiological, imaging, optogenetic and state-of-the-art viral circuit tracing techniques, we aim at dissecting the neuronal circuitry of appetitive Pavlovian conditioning with a focus on the amygdala, a key brain region important for both aversive and appetitive learning. Ultimately, elucidating these mechanisms at the level of defined neurons and circuits is fundamental not only for an understanding of memory processes in the brain in general, but also to inform a mechanistic approach to psychiatric conditions associated with amygdala dysfunction and dysregulated emotional responses including anxiety and mood disorders.
Max ERC Funding
2 497 200 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym BHIVE
Project Bio-derived HIgh Value polymers through novel Enzyme function
Researcher (PI) Emma Rusi Master
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Consolidator Grant (CoG), LS9, ERC-2014-CoG
Summary Recent advances in systems-level study of cells and organisms have revealed the enormous potential to live more sustainably through better use of biological processes. Plants sustainably synthesize the most abundant and diverse materials on Earth. By applying recent advances in life science technology, we can better harness renewable plant resources and bioconversion processes, to develop environmentally and politically sustainable human enterprise and lifestyles. At the same time, the global market for high-value biochemicals and bioplastics from forest and agricultural sources is rapidly increasing, which presents new opportunities for forest and agricultural sectors.
The overall aim of BHIVE is to illuminate uncharted regions of genome and metagenome sequences to discover entirely new protein families that can be used to sustainably synthesize novel, high-value biomaterials from renewable plant resources. The approach will include three parallel research thrusts: 1) strategic analysis of transcriptome and metagenome sequences to identify proteins with entirely unknown function relevant to biomass (lignocellulose) transformation, 2) mapping of uncharted regions within phylogenetic trees of poorly characterized enzyme families with recognized potential to modify the chemistry and biophysical properties of plant polysaccharides, and 3) the design and development of novel enzyme screens to directly address the increasing limitations of existing assays to uncover entirely new protein functions. BHIVE will be unique in its undivided focus on characterizing lignocellulose-active proteins encoded by the 30-40% of un-annotated sequence, or genomic “dark matter”, typical of nearly all genome sequences. In this way, BHIVE tackles a key constraint to fully realizing the societal and environmental benefits of the genomics era.
Summary
Recent advances in systems-level study of cells and organisms have revealed the enormous potential to live more sustainably through better use of biological processes. Plants sustainably synthesize the most abundant and diverse materials on Earth. By applying recent advances in life science technology, we can better harness renewable plant resources and bioconversion processes, to develop environmentally and politically sustainable human enterprise and lifestyles. At the same time, the global market for high-value biochemicals and bioplastics from forest and agricultural sources is rapidly increasing, which presents new opportunities for forest and agricultural sectors.
The overall aim of BHIVE is to illuminate uncharted regions of genome and metagenome sequences to discover entirely new protein families that can be used to sustainably synthesize novel, high-value biomaterials from renewable plant resources. The approach will include three parallel research thrusts: 1) strategic analysis of transcriptome and metagenome sequences to identify proteins with entirely unknown function relevant to biomass (lignocellulose) transformation, 2) mapping of uncharted regions within phylogenetic trees of poorly characterized enzyme families with recognized potential to modify the chemistry and biophysical properties of plant polysaccharides, and 3) the design and development of novel enzyme screens to directly address the increasing limitations of existing assays to uncover entirely new protein functions. BHIVE will be unique in its undivided focus on characterizing lignocellulose-active proteins encoded by the 30-40% of un-annotated sequence, or genomic “dark matter”, typical of nearly all genome sequences. In this way, BHIVE tackles a key constraint to fully realizing the societal and environmental benefits of the genomics era.
Max ERC Funding
1 977 781 €
Duration
Start date: 2015-09-01, End date: 2020-12-31
Project acronym BIZEB
Project Bio-Imaging of Zoonotic and Emerging Bunyaviruses
Researcher (PI) Juha Huiskonen
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), LS1, ERC-2014-CoG
Summary We aim to understand host cell entry of enveloped viruses at molecular level. A crucial step in this process is when the viral membrane fuses with the cell membrane. Similarly to cell–cell fusion, this step is mediated by fusion proteins (classes I–III). Several medically important viruses, notably dengue and many bunyaviruses, harbour a class II fusion protein. Class II fusion protein structures have been solved in pre- and post-fusion conformation and in some cases different factors promoting fusion have been determined. However, questions about the most important steps of this key process remain unanswered. I will focus on the entry mechanism of bunyaviruses by using cutting-edge, high spatial and temporal resolution bio-imaging techniques. These viruses have been chosen as a model system to maximise the significance of the project: they form an emerging viral threat to humans and animals, no approved vaccines or antivirals exist for human use and they are less studied than other class II fusion protein systems. Cryo-electron microscopy and tomography will be used to solve high-resolution structures (up to ~3 Å) of viruses, in addition to virus–receptor and virus–membrane complexes. Advanced fluorescence microscopy techniques will be used to probe the dynamics of virus entry and fusion in vivo and in vitro. Deciphering key steps in virus entry is expected to contribute to rational vaccine and drug design. During this project I aim to establish a world-class laboratory in structural and cellular biology of emerging viruses. The project greatly benefits from our unique biosafety level 3 laboratory offering advanced bio-imaging techniques. Furthermore it will also pave way for similar projects on other infectious viruses. Finally the novel computational image processing methods developed in this project will be broadly applicable for the analysis of flexible biological structures, which often pose the most challenging yet interesting questions in structural biology.
Summary
We aim to understand host cell entry of enveloped viruses at molecular level. A crucial step in this process is when the viral membrane fuses with the cell membrane. Similarly to cell–cell fusion, this step is mediated by fusion proteins (classes I–III). Several medically important viruses, notably dengue and many bunyaviruses, harbour a class II fusion protein. Class II fusion protein structures have been solved in pre- and post-fusion conformation and in some cases different factors promoting fusion have been determined. However, questions about the most important steps of this key process remain unanswered. I will focus on the entry mechanism of bunyaviruses by using cutting-edge, high spatial and temporal resolution bio-imaging techniques. These viruses have been chosen as a model system to maximise the significance of the project: they form an emerging viral threat to humans and animals, no approved vaccines or antivirals exist for human use and they are less studied than other class II fusion protein systems. Cryo-electron microscopy and tomography will be used to solve high-resolution structures (up to ~3 Å) of viruses, in addition to virus–receptor and virus–membrane complexes. Advanced fluorescence microscopy techniques will be used to probe the dynamics of virus entry and fusion in vivo and in vitro. Deciphering key steps in virus entry is expected to contribute to rational vaccine and drug design. During this project I aim to establish a world-class laboratory in structural and cellular biology of emerging viruses. The project greatly benefits from our unique biosafety level 3 laboratory offering advanced bio-imaging techniques. Furthermore it will also pave way for similar projects on other infectious viruses. Finally the novel computational image processing methods developed in this project will be broadly applicable for the analysis of flexible biological structures, which often pose the most challenging yet interesting questions in structural biology.
Max ERC Funding
1 998 375 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym CIRCUITASSEMBLY
Project Development of functional organization of the visual circuits in mice
Researcher (PI) Keisuke Yonehara
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Summary
The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym CleverGenes
Project Novel Gene Therapy Based on the Activation of Endogenous Genes for the Treatment of Ischemia - Concepts of endogenetherapy, release of promoter pausing, promoter-targeted ncRNAs and nuclear RNAi
Researcher (PI) Seppo Ylae-Herttuala
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Country Finland
Call Details Advanced Grant (AdG), LS7, ERC-2014-ADG
Summary Background: Therapeutic angiogenesis with vascular endothelial growth factors (VEGFs) has great potential to become a novel, minimally invasive new treatment for a large number of patients with severe myocardial ischemia. However, this requires development of new technology. Advancing state-of-the-art: We propose a paradigm shift in gene therapy for chronic ischemia by activating endogenous VEGF-A,-B and -C genes and angiogenic transcription programs from the native promoters instead of gene transfer of exogenous cDNA to target tissues. We will develop a new platform technology (endogenetherapy) based on our novel concept of the release of promoter pausing and new promoter-targeted upregulating short hairpinRNAs, tissue-specific superenhancerRNAs activating specific transcription centers involving gene clusters in different chromosomal regions, small circularRNAs formed from self-splicing exons-introns that can be regulated with oligonucleotides and small molecules such as metabolites, nuclear RNAi vectors and specific CRISPR/gRNAmutatedCas9-VP16 technology with an ability to target integration into genomic safe harbor sites. After preclinical studies in mice and in a newly developed chronic cardiac ischemia model in pigs with special emphasis on the analysis of clinically relevant blood flow, metabolic and functional outcomes based on MRI, ultrasound, photoacoustic and PET imaging, the best construct will be taken to a phase I clinical study in patients with severe myocardial ischemia. Since endogenetherapy also involves epigenetic changes, which are reversible and long-lasting, we expect to efficiently activate natural angiogenic programs. Significance: If successful, this approach will begin a new era in gene therapy. Since there is a clear lack of technology capable of targeted upregulation of endogenous genes, the novel endogenetherapy approach may become widely applicable beyond cardiovascular diseases also in other areas of medicine and biomedical research.
Summary
Background: Therapeutic angiogenesis with vascular endothelial growth factors (VEGFs) has great potential to become a novel, minimally invasive new treatment for a large number of patients with severe myocardial ischemia. However, this requires development of new technology. Advancing state-of-the-art: We propose a paradigm shift in gene therapy for chronic ischemia by activating endogenous VEGF-A,-B and -C genes and angiogenic transcription programs from the native promoters instead of gene transfer of exogenous cDNA to target tissues. We will develop a new platform technology (endogenetherapy) based on our novel concept of the release of promoter pausing and new promoter-targeted upregulating short hairpinRNAs, tissue-specific superenhancerRNAs activating specific transcription centers involving gene clusters in different chromosomal regions, small circularRNAs formed from self-splicing exons-introns that can be regulated with oligonucleotides and small molecules such as metabolites, nuclear RNAi vectors and specific CRISPR/gRNAmutatedCas9-VP16 technology with an ability to target integration into genomic safe harbor sites. After preclinical studies in mice and in a newly developed chronic cardiac ischemia model in pigs with special emphasis on the analysis of clinically relevant blood flow, metabolic and functional outcomes based on MRI, ultrasound, photoacoustic and PET imaging, the best construct will be taken to a phase I clinical study in patients with severe myocardial ischemia. Since endogenetherapy also involves epigenetic changes, which are reversible and long-lasting, we expect to efficiently activate natural angiogenic programs. Significance: If successful, this approach will begin a new era in gene therapy. Since there is a clear lack of technology capable of targeted upregulation of endogenous genes, the novel endogenetherapy approach may become widely applicable beyond cardiovascular diseases also in other areas of medicine and biomedical research.
Max ERC Funding
2 437 500 €
Duration
Start date: 2015-11-01, End date: 2021-04-30
Project acronym ConTExt
Project Connecting the Extreme
Researcher (PI) Sune Toft
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Consolidator Grant (CoG), PE9, ERC-2014-CoG
Summary Advances in technology and methodology over the last decade, have enabled the study of galaxies to the highest redshifts. This has revolutionized our understanding of the origin and evolution of galaxies. I have played a central role in this revolution, by discovering that at z=2, when the universe was only 3 Gyr old, half of the most massive galaxies were extremely compact and had already completed their star formation. During the last five years I have led a successful group of postdocs and students dedicated to investigating the extreme properties of these galaxies and place them into cosmological context. Combining a series of high profile observational studies published by my group and others, I recently proposed an evolutionary sequence that ties together the most extreme galaxies in the universe, from the most intense dusty starburst at cosmic dawn, through quasars: the brightest sources in the universe, driven by feedback from supermassive black holes, and galaxy cores hosting the densest conglomerations of stellar mass known, to the sleeping giants of the local universe, the giant ellipticals. The proposed research program will explore if such an evolutionary sequence exists, with the ultimate goal of reaching, for the first time, a coherent physical understanding of how the most massive galaxies in the universe formed. While there is a chance the rigorous tests may ultimately reveal the proposed sequence to be too simplistic, a guarantied outcome of the program is a significantly improved understanding of the physical mechanisms that shape galaxies and drive their star formation and quenching
Summary
Advances in technology and methodology over the last decade, have enabled the study of galaxies to the highest redshifts. This has revolutionized our understanding of the origin and evolution of galaxies. I have played a central role in this revolution, by discovering that at z=2, when the universe was only 3 Gyr old, half of the most massive galaxies were extremely compact and had already completed their star formation. During the last five years I have led a successful group of postdocs and students dedicated to investigating the extreme properties of these galaxies and place them into cosmological context. Combining a series of high profile observational studies published by my group and others, I recently proposed an evolutionary sequence that ties together the most extreme galaxies in the universe, from the most intense dusty starburst at cosmic dawn, through quasars: the brightest sources in the universe, driven by feedback from supermassive black holes, and galaxy cores hosting the densest conglomerations of stellar mass known, to the sleeping giants of the local universe, the giant ellipticals. The proposed research program will explore if such an evolutionary sequence exists, with the ultimate goal of reaching, for the first time, a coherent physical understanding of how the most massive galaxies in the universe formed. While there is a chance the rigorous tests may ultimately reveal the proposed sequence to be too simplistic, a guarantied outcome of the program is a significantly improved understanding of the physical mechanisms that shape galaxies and drive their star formation and quenching
Max ERC Funding
1 999 526 €
Duration
Start date: 2015-09-01, End date: 2021-02-28
Project acronym CsnCRL
Project The molecular basis of CULLIN E3 ligase regulation by the COP9 signalosome
Researcher (PI) Nicolas Thoma
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Country Switzerland
Call Details Advanced Grant (AdG), LS1, ERC-2014-ADG
Summary Specificity in the ubiquitin-proteasome system is largely conferred by ubiquitin E3 ligases (E3s). Cullin-RING ligases (CRLs), constituting ~30% of all E3s in humans, mediate the ubiquitination of ~20% of the proteins degraded by the proteasome. CRLs are divided into seven families based on their cullin constituent. Each cullin binds a RING domain protein, and a vast repertoire of adaptor/substrate receptor modules, collectively creating more than 200 distinct CRLs. All CRLs are regulated by the COP9 signalosome (CSN), an eight-protein isopeptidase that removes the covalently attached activator, NEDD8, from the cullin. Independent of NEDD8 cleavage, CSN forms protective complexes with CRLs, which prevents destructive auto-ubiquitination.
The integrity of the CSN-CRL system is crucially important for the normal cell physiology. Based on our previous work on CRL structures (Fischer, et al., Nature 2014; Fischer, et al., Cell 2011) and that of isolated CSN (Lingaraju et al., Nature 2014), We now intend to provide the underlying molecular mechanism of CRL regulation by CSN. Structural insights at atomic resolution, combined with in vitro and in vivo functional studies are designed to reveal (i) how the signalosome deneddylates and maintains the bound ligases in an inactive state, (ii) how the multiple CSN subunits bind to structurally diverse CRLs, and (iii) how CSN is itself subject to regulation by post-translational modifications or additional further factors.
The ERC funding would allow my lab to pursue an ambitious interdisciplinary approach combining X-ray crystallography, cryo-electron microscopy, biochemistry and cell biology. This is expected to provide a unique molecular understanding of CSN action. Beyond ubiquitination, insight into this >13- subunit CSN-CRL assembly will allow examining general principles of multi-subunit complex action and reveal how the numerous, often essential, subunits contribute to complex function.
Summary
Specificity in the ubiquitin-proteasome system is largely conferred by ubiquitin E3 ligases (E3s). Cullin-RING ligases (CRLs), constituting ~30% of all E3s in humans, mediate the ubiquitination of ~20% of the proteins degraded by the proteasome. CRLs are divided into seven families based on their cullin constituent. Each cullin binds a RING domain protein, and a vast repertoire of adaptor/substrate receptor modules, collectively creating more than 200 distinct CRLs. All CRLs are regulated by the COP9 signalosome (CSN), an eight-protein isopeptidase that removes the covalently attached activator, NEDD8, from the cullin. Independent of NEDD8 cleavage, CSN forms protective complexes with CRLs, which prevents destructive auto-ubiquitination.
The integrity of the CSN-CRL system is crucially important for the normal cell physiology. Based on our previous work on CRL structures (Fischer, et al., Nature 2014; Fischer, et al., Cell 2011) and that of isolated CSN (Lingaraju et al., Nature 2014), We now intend to provide the underlying molecular mechanism of CRL regulation by CSN. Structural insights at atomic resolution, combined with in vitro and in vivo functional studies are designed to reveal (i) how the signalosome deneddylates and maintains the bound ligases in an inactive state, (ii) how the multiple CSN subunits bind to structurally diverse CRLs, and (iii) how CSN is itself subject to regulation by post-translational modifications or additional further factors.
The ERC funding would allow my lab to pursue an ambitious interdisciplinary approach combining X-ray crystallography, cryo-electron microscopy, biochemistry and cell biology. This is expected to provide a unique molecular understanding of CSN action. Beyond ubiquitination, insight into this >13- subunit CSN-CRL assembly will allow examining general principles of multi-subunit complex action and reveal how the numerous, often essential, subunits contribute to complex function.
Max ERC Funding
2 200 677 €
Duration
Start date: 2016-01-01, End date: 2021-02-28
Project acronym CSUMECH
Project Cholesterol and Sugar Uptake Mechanisms
Researcher (PI) Bjoern Pedersen
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary Cardiovascular disease, diabetes and cancer have a dramatic impact on modern society, and in great part are related to uptake of cholesterol and sugar. We still know surprisingly little about the molecular details of the processes that goes on in this essential part of human basic metabolism. This application addresses cholesterol and sugar transport and aim to elucidate the molecular mechanism of cholesterol and sugar uptake in humans. It moves the frontiers of the field by shifting the focus to in vitro work allowing hitherto untried structural and biochemical experiments to be performed.
Cholesterol uptake from the intestine is mediated by the membrane protein NPC1L1. Despite extensive research, the molecular mechanism of NPC1L1-dependent cholesterol uptake still remains largely unknown.
Facilitated sugar transport in humans is made possible by sugar transporters called GLUTs and SWEETs, and every cell possesses these sugar transport systems. For all these uptake systems structural information is sorely lacking to address important mechanistic questions to help elucidate their molecular mechanism.
I will address this using a complementary set of methods founded in macromolecular crystallography and electron microscopy to determine the 3-dimensional structures of key players in these uptake systems. My unpublished preliminary results have established the feasibility of this approach. This will be followed up by biochemical characterization of the molecular mechanism in vitro and in silico.
This high risk/high reward membrane protein proposal could lead to a breakthrough in how we approach human biochemical pathways that are linked to trans-membrane transport. An improved understanding of cholesterol and sugar homeostasis has tremendous potential for improving general public health, and furthermore this proposal will help to uncover general principles of endocytotic uptake and facilitated diffusion systems at the molecular level.
Summary
Cardiovascular disease, diabetes and cancer have a dramatic impact on modern society, and in great part are related to uptake of cholesterol and sugar. We still know surprisingly little about the molecular details of the processes that goes on in this essential part of human basic metabolism. This application addresses cholesterol and sugar transport and aim to elucidate the molecular mechanism of cholesterol and sugar uptake in humans. It moves the frontiers of the field by shifting the focus to in vitro work allowing hitherto untried structural and biochemical experiments to be performed.
Cholesterol uptake from the intestine is mediated by the membrane protein NPC1L1. Despite extensive research, the molecular mechanism of NPC1L1-dependent cholesterol uptake still remains largely unknown.
Facilitated sugar transport in humans is made possible by sugar transporters called GLUTs and SWEETs, and every cell possesses these sugar transport systems. For all these uptake systems structural information is sorely lacking to address important mechanistic questions to help elucidate their molecular mechanism.
I will address this using a complementary set of methods founded in macromolecular crystallography and electron microscopy to determine the 3-dimensional structures of key players in these uptake systems. My unpublished preliminary results have established the feasibility of this approach. This will be followed up by biochemical characterization of the molecular mechanism in vitro and in silico.
This high risk/high reward membrane protein proposal could lead to a breakthrough in how we approach human biochemical pathways that are linked to trans-membrane transport. An improved understanding of cholesterol and sugar homeostasis has tremendous potential for improving general public health, and furthermore this proposal will help to uncover general principles of endocytotic uptake and facilitated diffusion systems at the molecular level.
Max ERC Funding
1 499 848 €
Duration
Start date: 2015-07-01, End date: 2020-12-31
Project acronym DUB-DECODE
Project Systematic Decoding of Deubiquitylase-Regulated Signaling Networks
Researcher (PI) Chuna Ram Choudhary
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Consolidator Grant (CoG), LS2, ERC-2014-CoG
Summary Cellular processes are largely governed by sophisticated protein posttranslational modification (PTM)-dependent signaling networks, and a systematic understanding of regulatory PTM-based networks is a key goal in modern biology. Ubiquitin is a small, evolutionarily conserved signaling protein that acts as a PTM after being covalently conjugated to other proteins. Reversible ubiquitylation forms the most versatile and largest eukaryote-exclusive signaling system, and regulates the stability and function of almost all proteins in cells. Deubiquitylases (DUBs) are ubiquitin-specific proteases that remove substrate-conjugated ubiquitin, and thereby regulate virtually all ubiquitylation-dependent signaling. Because of their central role in ubiquitin signaling, DUBs have essential functions in mammalian physiology and development, and the dysregulated expression and mutation of DUBs is frequently associated with human diseases. Despite their vital functions, very little is known about the proteins and ubiquitylation sites that are regulated by DUBs and this knowledge gap is hampering our understanding of the molecular mechanisms by which DUBs control diverse biological processes. Recently, we developed a mass spectrometry-based proteomics approach that allowed unbiased and site-specific quantification of ubiquitylation on a systems-wide scale. Here we propose to comprehensively investigate DUB-regulated ubiquitin signaling in human cells. We will integrate interdisciplinary approaches to develop next-generation cell models and innovative proteomic technologies to systematically decode DUB function in human cells. This will enable a novel and detailed understanding of DUB-regulated signaling networks, and open up new avenues for further research into the mechanisms and biological functions of ubiquitylation and of ubiquitin-like modifiers.
Summary
Cellular processes are largely governed by sophisticated protein posttranslational modification (PTM)-dependent signaling networks, and a systematic understanding of regulatory PTM-based networks is a key goal in modern biology. Ubiquitin is a small, evolutionarily conserved signaling protein that acts as a PTM after being covalently conjugated to other proteins. Reversible ubiquitylation forms the most versatile and largest eukaryote-exclusive signaling system, and regulates the stability and function of almost all proteins in cells. Deubiquitylases (DUBs) are ubiquitin-specific proteases that remove substrate-conjugated ubiquitin, and thereby regulate virtually all ubiquitylation-dependent signaling. Because of their central role in ubiquitin signaling, DUBs have essential functions in mammalian physiology and development, and the dysregulated expression and mutation of DUBs is frequently associated with human diseases. Despite their vital functions, very little is known about the proteins and ubiquitylation sites that are regulated by DUBs and this knowledge gap is hampering our understanding of the molecular mechanisms by which DUBs control diverse biological processes. Recently, we developed a mass spectrometry-based proteomics approach that allowed unbiased and site-specific quantification of ubiquitylation on a systems-wide scale. Here we propose to comprehensively investigate DUB-regulated ubiquitin signaling in human cells. We will integrate interdisciplinary approaches to develop next-generation cell models and innovative proteomic technologies to systematically decode DUB function in human cells. This will enable a novel and detailed understanding of DUB-regulated signaling networks, and open up new avenues for further research into the mechanisms and biological functions of ubiquitylation and of ubiquitin-like modifiers.
Max ERC Funding
1 972 570 €
Duration
Start date: 2015-10-01, End date: 2021-03-31
Project acronym Elephant Project
Project How elephants grow old
Researcher (PI) Virpi Annikki Lummaa
Host Institution (HI) TURUN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary The ageing population structure of most European countries has major health, economic and social consequences that lead to a need to better understand both the evolutionary limitations of deferring ageing, as well as the mechanisms involved in growing old. Ageing involves reduced fertility, mobility and ability to combat disease, but some individuals cope with growing old better than others. Improving the quality of life at old age and predicting future changes in longevity patterns of societies might depend on our ability to develop indicators of how old we really are and how many healthy years we have ahead, and how those indicators depend on our health history across several decades. Yet, most model species used in biology are short-lived and provide a poor comparison to long-lived mammals such as humans. Further, they do not often inform on the mechanisms of ageing alongside its fitness consequences in natural populations of long-lived mammals. This project integrates different ageing mechanisms with unique data on lifelong disease and reproductive history in the most long-lived non-human mammal studied so far, the Asian elephant. I will examine how different mechanisms of ageing (telomere dynamics, oxidative stress and telomerase activity) interact with lifelong disease and reproductive history, and current endocrinological measures of stress and reproductive status. This will help us to better understand both the mechanisms of ageing and their consequences on senescence rates. To do so, I will combine the most comprehensive demographic data (N~10.000) on Asian elephants in the world with bi-monthly health assessments and disease records across life (N~2500) and with longitudinal markers of ageing and hormonal correlates of stress and reproductive potential (N~240). Understanding changes in health across life and its links to ageing rates, stress levels and life-history in a species as long-lived as humans will be relevant to a large range of end-users.
Summary
The ageing population structure of most European countries has major health, economic and social consequences that lead to a need to better understand both the evolutionary limitations of deferring ageing, as well as the mechanisms involved in growing old. Ageing involves reduced fertility, mobility and ability to combat disease, but some individuals cope with growing old better than others. Improving the quality of life at old age and predicting future changes in longevity patterns of societies might depend on our ability to develop indicators of how old we really are and how many healthy years we have ahead, and how those indicators depend on our health history across several decades. Yet, most model species used in biology are short-lived and provide a poor comparison to long-lived mammals such as humans. Further, they do not often inform on the mechanisms of ageing alongside its fitness consequences in natural populations of long-lived mammals. This project integrates different ageing mechanisms with unique data on lifelong disease and reproductive history in the most long-lived non-human mammal studied so far, the Asian elephant. I will examine how different mechanisms of ageing (telomere dynamics, oxidative stress and telomerase activity) interact with lifelong disease and reproductive history, and current endocrinological measures of stress and reproductive status. This will help us to better understand both the mechanisms of ageing and their consequences on senescence rates. To do so, I will combine the most comprehensive demographic data (N~10.000) on Asian elephants in the world with bi-monthly health assessments and disease records across life (N~2500) and with longitudinal markers of ageing and hormonal correlates of stress and reproductive potential (N~240). Understanding changes in health across life and its links to ageing rates, stress levels and life-history in a species as long-lived as humans will be relevant to a large range of end-users.
Max ERC Funding
1 949 316 €
Duration
Start date: 2016-01-01, End date: 2021-12-31