Project acronym ANYONIC
Project Statistics of Exotic Fractional Hall States
Researcher (PI) Mordehai HEIBLUM
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Advanced Grant (AdG), PE3, ERC-2018-ADG
Summary Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Summary
Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Max ERC Funding
1 801 094 €
Duration
Start date: 2019-05-01, End date: 2024-10-31
Project acronym BioMet
Project Selective Functionalization of Saturated Hydrocarbons
Researcher (PI) Ilan MAREK
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Country Israel
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Despite that C–H functionalization represents a paradigm shift from the standard logic of organic synthesis, the selective activation of non-functionalized alkanes has puzzled chemists for centuries and is always referred to one of the remaining major challenges in chemical sciences. Alkanes are inert compounds representing the major constituents of natural gas and petroleum. Converting these cheap and widely available hydrocarbon feedstocks into added-value intermediates would tremendously affect the field of chemistry. For long saturated hydrocarbons, one must distinguish between non-equivalent but chemically very similar alkane substrate C−H bonds, and for functionalization at the terminus position, one must favor activation of the stronger, primary C−H bonds at the expense of weaker and numerous secondary C-H bonds. The goal of this work is to develop a general principle in organic synthesis for the preparation of a wide variety of more complex molecular architectures from saturated hydrocarbons. In our approach, the alkane will first be transformed into an alkene that will subsequently be engaged in a metal-catalyzed hydrometalation/migration sequence. The first step of the sequence, ideally represented by the removal of two hydrogen atoms, will be performed by the use of a mutated strain of Rhodococcus. The position and geometry of the formed double bond has no effect on the second step of the reaction as the metal-catalyzed hydrometalation/migration will isomerize the double bond along the carbon skeleton to selectively produce the primary organometallic species. Trapping the resulting organometallic derivatives with a large variety of electrophiles will provide the desired functionalized alkane. This work will lead to the invention of new, selective and efficient processes for the utilization of simple hydrocarbons and valorize the synthetic potential of raw hydrocarbon feedstock for the environmentally benign production of new compounds and new materials.
Summary
Despite that C–H functionalization represents a paradigm shift from the standard logic of organic synthesis, the selective activation of non-functionalized alkanes has puzzled chemists for centuries and is always referred to one of the remaining major challenges in chemical sciences. Alkanes are inert compounds representing the major constituents of natural gas and petroleum. Converting these cheap and widely available hydrocarbon feedstocks into added-value intermediates would tremendously affect the field of chemistry. For long saturated hydrocarbons, one must distinguish between non-equivalent but chemically very similar alkane substrate C−H bonds, and for functionalization at the terminus position, one must favor activation of the stronger, primary C−H bonds at the expense of weaker and numerous secondary C-H bonds. The goal of this work is to develop a general principle in organic synthesis for the preparation of a wide variety of more complex molecular architectures from saturated hydrocarbons. In our approach, the alkane will first be transformed into an alkene that will subsequently be engaged in a metal-catalyzed hydrometalation/migration sequence. The first step of the sequence, ideally represented by the removal of two hydrogen atoms, will be performed by the use of a mutated strain of Rhodococcus. The position and geometry of the formed double bond has no effect on the second step of the reaction as the metal-catalyzed hydrometalation/migration will isomerize the double bond along the carbon skeleton to selectively produce the primary organometallic species. Trapping the resulting organometallic derivatives with a large variety of electrophiles will provide the desired functionalized alkane. This work will lead to the invention of new, selective and efficient processes for the utilization of simple hydrocarbons and valorize the synthetic potential of raw hydrocarbon feedstock for the environmentally benign production of new compounds and new materials.
Max ERC Funding
2 499 375 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BISON
Project Bio-Inspired Self-Assembled Supramolecular Organic Nanostructures
Researcher (PI) Ehud Gazit
Host Institution (HI) TEL AVIV UNIVERSITY
Country Israel
Call Details Advanced Grant (AdG), LS9, ERC-2015-AdG
Summary Peptide building blocks serve as very attractive bio-inspired elements in nanotechnology owing to their controlled self-assembly, inherent biocompatibility, chemical versatility, biological recognition abilities and facile synthesis. We have demonstrated the ability of remarkably simple aromatic peptides to form well-ordered nanostructures of exceptional physical properties. By taking inspiration from the minimal recognition modules used by nature to mediate coordinated processes of self-assembly, we have developed building blocks that form well-ordered nanostructures. The compact design of the building blocks, and therefore, the unique structural organization, resulted in metallic-like Young's modulus, blue luminescence due to quantum confinement, and notable piezoelectric properties. The goal of this proposal is to develop two new fronts for bio-inspired building block repertoire along with co-assembly to provide new avenues for organic nanotechnology. This will combine our vast experience in the assembly of aromatic peptides together with additional structural modules from nature. The new entities will be developed by exploiting the design principles of small aromatic building blocks to arrive at the smallest possible module that form super helical assembly based on the coiled coil motifs and establishing peptide nucleic acids based systems to combine the worlds of peptide and DNA nanotechnologies. The proposed research will combine extensive design and synthesis effort to provide a very diverse collection of novel buildings blocks and determination of their self-assembly process, followed by broad chemical, physical, and biological characterization of the nanostructures. Furthermore, effort will be made to establish supramolecular co-polymer systems to extend the morphological control of the assembly process. The result of the project will be a large and defined collection of novel chemical entities that will help reshape the field of bioorganic nanotechnology.
Summary
Peptide building blocks serve as very attractive bio-inspired elements in nanotechnology owing to their controlled self-assembly, inherent biocompatibility, chemical versatility, biological recognition abilities and facile synthesis. We have demonstrated the ability of remarkably simple aromatic peptides to form well-ordered nanostructures of exceptional physical properties. By taking inspiration from the minimal recognition modules used by nature to mediate coordinated processes of self-assembly, we have developed building blocks that form well-ordered nanostructures. The compact design of the building blocks, and therefore, the unique structural organization, resulted in metallic-like Young's modulus, blue luminescence due to quantum confinement, and notable piezoelectric properties. The goal of this proposal is to develop two new fronts for bio-inspired building block repertoire along with co-assembly to provide new avenues for organic nanotechnology. This will combine our vast experience in the assembly of aromatic peptides together with additional structural modules from nature. The new entities will be developed by exploiting the design principles of small aromatic building blocks to arrive at the smallest possible module that form super helical assembly based on the coiled coil motifs and establishing peptide nucleic acids based systems to combine the worlds of peptide and DNA nanotechnologies. The proposed research will combine extensive design and synthesis effort to provide a very diverse collection of novel buildings blocks and determination of their self-assembly process, followed by broad chemical, physical, and biological characterization of the nanostructures. Furthermore, effort will be made to establish supramolecular co-polymer systems to extend the morphological control of the assembly process. The result of the project will be a large and defined collection of novel chemical entities that will help reshape the field of bioorganic nanotechnology.
Max ERC Funding
3 003 125 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym CartiLube
Project Lubricating Cartilage: exploring the relation between lubrication and gene-regulation to alleviate osteoarthritis
Researcher (PI) Jacob KLEIN
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary Can we exploit insights from the remarkably lubricated surfaces of articular cartilage, to create lubricants that may alleviate osteoarthritis (OA), the most widespread joint disease, affecting millions? These, succinctly, are the challenges of the present proposal. They are driven by our recent finding that lubrication of destabilised joints leads to changes in gene-regulation of the cartilage-embedded chondrocytes to protect against development of the disease. OA alleviation is known to arise through orthopedically suppressing shear-stresses on the cartilage, and a central premise of this project is that, by reducing friction at the articulating cartilage through suitable lubrication, we may achieve the same beneficial effect on the disease. The objectives of this project are to better understand the origins of cartilage boundary lubrication through examination of friction-reduction by its main molecular components, and exploit that understanding to create lubricants that, on intra-articular injection, will lubricate cartilage sufficiently well to achieve alleviation of OA via gene regulation. The project will examine, via both nanotribometric and macroscopic measurements, how the main molecular species implicated in cartilage lubrication, lipids, hyaluronan and lubricin, and their combinations, act together to form optimally lubricating boundary layers on model surfaces as well as on excised cartilage. Based on this, we shall develop suitable materials to lubricate cartilage in joints, using mouse models. Lubricants will further be optimized with respect to their retention in the joint and cartilage targeting, both in model studies and in vivo. The effect of the lubricants in regulating gene expression, in reducing pain and cartilage degradation, and in promoting stem-cell adhesion to the cartilage will be studied in a mouse model in which OA has been induced. Our results will have implications for treatment of a common, debilitating disease.
Summary
Can we exploit insights from the remarkably lubricated surfaces of articular cartilage, to create lubricants that may alleviate osteoarthritis (OA), the most widespread joint disease, affecting millions? These, succinctly, are the challenges of the present proposal. They are driven by our recent finding that lubrication of destabilised joints leads to changes in gene-regulation of the cartilage-embedded chondrocytes to protect against development of the disease. OA alleviation is known to arise through orthopedically suppressing shear-stresses on the cartilage, and a central premise of this project is that, by reducing friction at the articulating cartilage through suitable lubrication, we may achieve the same beneficial effect on the disease. The objectives of this project are to better understand the origins of cartilage boundary lubrication through examination of friction-reduction by its main molecular components, and exploit that understanding to create lubricants that, on intra-articular injection, will lubricate cartilage sufficiently well to achieve alleviation of OA via gene regulation. The project will examine, via both nanotribometric and macroscopic measurements, how the main molecular species implicated in cartilage lubrication, lipids, hyaluronan and lubricin, and their combinations, act together to form optimally lubricating boundary layers on model surfaces as well as on excised cartilage. Based on this, we shall develop suitable materials to lubricate cartilage in joints, using mouse models. Lubricants will further be optimized with respect to their retention in the joint and cartilage targeting, both in model studies and in vivo. The effect of the lubricants in regulating gene expression, in reducing pain and cartilage degradation, and in promoting stem-cell adhesion to the cartilage will be studied in a mouse model in which OA has been induced. Our results will have implications for treatment of a common, debilitating disease.
Max ERC Funding
2 499 944 €
Duration
Start date: 2017-09-01, End date: 2023-08-31
Project acronym CHROMATINSYS
Project Systematic Approach to Dissect the Interplay between Chromatin and Transcription
Researcher (PI) Nir Friedman
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Country Israel
Call Details Advanced Grant (AdG), LS2, ERC-2013-ADG
Summary Epigenetic mechanisms play an important role in regulating and maintaining the functionality of cells and have been implicated in a wide range of human diseases. Histone proteins that form the protein core of nucleosomes are subject to a bewildering array of covalent and structural modifications, which can repress, permit, or promote transcription. These modifications can be added and removed by specialized complexes that are recruited by other covalent modifications, by transcription factors, or by the transcriptional machinery. Advances in genomics led to comprehensive mapping of the ``epigenome'' in a range of tissues and organisms. These maps established the tight connection between histone modifications and transcription programs. These static charts, however, are less successful at uncovering the underlying mechanisms, logic, and function of histone modifications in establishing and maintaining transcriptional programs. Our premise is that we can answer these basic questions by observing the effect of genetic perturbations on the dynamics of both chromatin state and transcriptional activity. We aim to dissect the chromatin-transcription system in a systematic manner by building on our extensive experience in modeling and analysis, and a unique high-throughput experimental system we established in my lab.
We plan to use the budding yeast model organism, which allows for
efficient genetic and experimental manipulations. We will combine two technologies: (1) high-throughput measurements of single-cell
transcriptional output using fluorescence reporters; and (2) high-throughput immunoprecipitation sequencing assays to map chromatin state. Measuring with these the dynamics of response to stimuli under different genetic backgrounds and using advanced stochastic network models, we will chart detailed mechanisms that are opaque to current approaches and elucidate the general principles that govern the interplay between chromatin and transcription.
Summary
Epigenetic mechanisms play an important role in regulating and maintaining the functionality of cells and have been implicated in a wide range of human diseases. Histone proteins that form the protein core of nucleosomes are subject to a bewildering array of covalent and structural modifications, which can repress, permit, or promote transcription. These modifications can be added and removed by specialized complexes that are recruited by other covalent modifications, by transcription factors, or by the transcriptional machinery. Advances in genomics led to comprehensive mapping of the ``epigenome'' in a range of tissues and organisms. These maps established the tight connection between histone modifications and transcription programs. These static charts, however, are less successful at uncovering the underlying mechanisms, logic, and function of histone modifications in establishing and maintaining transcriptional programs. Our premise is that we can answer these basic questions by observing the effect of genetic perturbations on the dynamics of both chromatin state and transcriptional activity. We aim to dissect the chromatin-transcription system in a systematic manner by building on our extensive experience in modeling and analysis, and a unique high-throughput experimental system we established in my lab.
We plan to use the budding yeast model organism, which allows for
efficient genetic and experimental manipulations. We will combine two technologies: (1) high-throughput measurements of single-cell
transcriptional output using fluorescence reporters; and (2) high-throughput immunoprecipitation sequencing assays to map chromatin state. Measuring with these the dynamics of response to stimuli under different genetic backgrounds and using advanced stochastic network models, we will chart detailed mechanisms that are opaque to current approaches and elucidate the general principles that govern the interplay between chromatin and transcription.
Max ERC Funding
2 396 450 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym CISS
Project Chiral Induced Spin Selectivity
Researcher (PI) Ron Naaman
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary The overall objective is to fully understand the Chiral Induced Spin Selectivity (CISS) effect, which was discovered recently. It was found that the transmission or conduction of electrons through chiral molecules is spin dependent. The CISS effect is a change in the pradigm that assumed that any spin manipulation requiers magnetic materials or materials with high spin-orbit coupling. These unexpected new findings open new possibilities for applying chiral molecules in spintronics applications and may provide new insights on electron transfer processes in Biology.
The specific goals of the proposed research are
(i) To establish the parameters that affect the magnitude of the CISS effect.
(ii) To demonstrate spintronics devices (memory and transistors) that are based on the CISS effect.
(iii) To investigate the role of CISS in electron transfer in biology related systems.
The experiments will be performed applying a combination of experimental methods including photoelectron spectroscopy, single molecule conduction, light-induced electron transfer, and spin specific conduction through magneto-electric devices.
The project has a potential to have very large impact on various fields from Physics to Biology. It will result in the establishment of chiral organic molecules as a new substrate for wide range of spintronics related applications including magnetic memory, and in determining whether spins play a role in electron transfer processes in biology.
Summary
The overall objective is to fully understand the Chiral Induced Spin Selectivity (CISS) effect, which was discovered recently. It was found that the transmission or conduction of electrons through chiral molecules is spin dependent. The CISS effect is a change in the pradigm that assumed that any spin manipulation requiers magnetic materials or materials with high spin-orbit coupling. These unexpected new findings open new possibilities for applying chiral molecules in spintronics applications and may provide new insights on electron transfer processes in Biology.
The specific goals of the proposed research are
(i) To establish the parameters that affect the magnitude of the CISS effect.
(ii) To demonstrate spintronics devices (memory and transistors) that are based on the CISS effect.
(iii) To investigate the role of CISS in electron transfer in biology related systems.
The experiments will be performed applying a combination of experimental methods including photoelectron spectroscopy, single molecule conduction, light-induced electron transfer, and spin specific conduction through magneto-electric devices.
The project has a potential to have very large impact on various fields from Physics to Biology. It will result in the establishment of chiral organic molecules as a new substrate for wide range of spintronics related applications including magnetic memory, and in determining whether spins play a role in electron transfer processes in biology.
Max ERC Funding
2 499 998 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym CloudRadioNet
Project Cloud Wireless Networks: An Information Theoretic Framework
Researcher (PI) Shlomo Shamai Shitz
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Country Israel
Call Details Advanced Grant (AdG), PE7, ERC-2015-AdG
Summary This five years research proposal is focused on the development of novel information theoretic concepts and techniques and their usage, as to identify the ultimate communications limits and potential of different cloud radio network structures, in which the central signal processing is migrated to the cloud (remote central units), via fronthaul/backhaul infrastructure links. Moreover, it is also directed to introduce and study the optimal or close to optimal strategies for those systems that are to be motivated by the developed theory. We plan to address wireless networks, having future cellular technology in mind, but the basic tools and approaches to be built and researched are relevant to other communication networks as well. Cloud communication networks motivate novel information theoretic views, and perspectives that put backhaul/fronthaul connections in the center, thus deviating considerably from standard theoretical studies of communications links and networks, which are applied to this domain. Our approach accounts for the fact that in such networks information theoretic separation concepts are no longer optimal, hence isolating simple basic components of the network is essentially suboptimal. The proposed view incorporates, in a unified way, under the general cover of information theory: Multi-terminal distributed networks; Basic and timely concepts of distributed coding and communications; Network communications and primarily network coding, Index coding, as associated with interference alignment and caching; Information-Estimation relations and signal processing, addressing the impact of distributed channel state information directly; A variety of fundamental concepts in optimization and random matrix theories. This path provides a natural theoretical framework directed towards better understanding the potential and limitation of cloud networks on one hand and paves the way to innovative communications design principles on the other.
Summary
This five years research proposal is focused on the development of novel information theoretic concepts and techniques and their usage, as to identify the ultimate communications limits and potential of different cloud radio network structures, in which the central signal processing is migrated to the cloud (remote central units), via fronthaul/backhaul infrastructure links. Moreover, it is also directed to introduce and study the optimal or close to optimal strategies for those systems that are to be motivated by the developed theory. We plan to address wireless networks, having future cellular technology in mind, but the basic tools and approaches to be built and researched are relevant to other communication networks as well. Cloud communication networks motivate novel information theoretic views, and perspectives that put backhaul/fronthaul connections in the center, thus deviating considerably from standard theoretical studies of communications links and networks, which are applied to this domain. Our approach accounts for the fact that in such networks information theoretic separation concepts are no longer optimal, hence isolating simple basic components of the network is essentially suboptimal. The proposed view incorporates, in a unified way, under the general cover of information theory: Multi-terminal distributed networks; Basic and timely concepts of distributed coding and communications; Network communications and primarily network coding, Index coding, as associated with interference alignment and caching; Information-Estimation relations and signal processing, addressing the impact of distributed channel state information directly; A variety of fundamental concepts in optimization and random matrix theories. This path provides a natural theoretical framework directed towards better understanding the potential and limitation of cloud networks on one hand and paves the way to innovative communications design principles on the other.
Max ERC Funding
1 981 782 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym CoupledNC
Project Coupled Nanocrystal Molecules: Quantum coupling effects via chemical coupling of colloidal nanocrystals
Researcher (PI) Uri BANIN
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Country Israel
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary Coupling of atoms is the basis of chemistry, yielding the beauty and richness of molecules and materials. Herein I introduce nanocrystal chemistry: the use of semiconductor nanocrystals (NCs) as artificial atoms to form NC molecules that are chemically, structurally and physically coupled. The unique emergent quantum mechanical consequences of the NCs coupling will be studied and tailored to yield a chemical-quantum palette: coherent coupling of NC exciton states; dual color single photon emitters functional also as photo-switchable chromophores in super-resolution fluorescence microscopy; electrically switchable single NC photon emitters for utilization as taggants for neuronal activity and as chromophores in displays; new NC structures for lasing; and coupled quasi-1D NC chains manifesting mini-band formation, and tailored for a quantum-cascade effect for IR photon emission. A novel methodology of controlled oriented attachment of NC building blocks (in particular of core/shell NCs) will be presented to realize the coupled NCs molecules. For this a new type of Janus NC building block will be developed, and used as an element in a Lego-type construction of double quantum dots (dimers), heterodimers coupling two different types of NCs, and more complex NC coupled quantum structures. To realize this NC chemistry approach, surface control is essential, which will be achieved via investigation of the chemical and dynamical properties of the NCs surface ligands layer. As outcome I can expect to decipher NCs surface chemistry and dynamics, including its size dependence, and to introduce Janus NCs with chemically distinct and selectively modified surface faces. From this I will develop a new step-wise approach for synthesis of coupled NCs molecules and reveal the consequences of quantum coupling in them. This will inspire theoretical and further experimental work and will set the stage for the development of the diverse potential applications of coupled NC molecules.
Summary
Coupling of atoms is the basis of chemistry, yielding the beauty and richness of molecules and materials. Herein I introduce nanocrystal chemistry: the use of semiconductor nanocrystals (NCs) as artificial atoms to form NC molecules that are chemically, structurally and physically coupled. The unique emergent quantum mechanical consequences of the NCs coupling will be studied and tailored to yield a chemical-quantum palette: coherent coupling of NC exciton states; dual color single photon emitters functional also as photo-switchable chromophores in super-resolution fluorescence microscopy; electrically switchable single NC photon emitters for utilization as taggants for neuronal activity and as chromophores in displays; new NC structures for lasing; and coupled quasi-1D NC chains manifesting mini-band formation, and tailored for a quantum-cascade effect for IR photon emission. A novel methodology of controlled oriented attachment of NC building blocks (in particular of core/shell NCs) will be presented to realize the coupled NCs molecules. For this a new type of Janus NC building block will be developed, and used as an element in a Lego-type construction of double quantum dots (dimers), heterodimers coupling two different types of NCs, and more complex NC coupled quantum structures. To realize this NC chemistry approach, surface control is essential, which will be achieved via investigation of the chemical and dynamical properties of the NCs surface ligands layer. As outcome I can expect to decipher NCs surface chemistry and dynamics, including its size dependence, and to introduce Janus NCs with chemically distinct and selectively modified surface faces. From this I will develop a new step-wise approach for synthesis of coupled NCs molecules and reveal the consequences of quantum coupling in them. This will inspire theoretical and further experimental work and will set the stage for the development of the diverse potential applications of coupled NC molecules.
Max ERC Funding
2 499 750 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym DCENSY
Project Doping, Charge Transfer and Energy Flow in Hybrid Nanoparticle Systems
Researcher (PI) Uri Banin
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Country Israel
Call Details Advanced Grant (AdG), PE4, ERC-2009-AdG
Summary We target a frontier in nanocrystal science of combining disparate materials into a single hybrid nanosystem. This offers an intriguing route to engineer nanomaterials with multiple functionalities in ways that are not accessible in bulk materials or in molecules. Such control of novel material combinations on a single nanoparticle or in a super-structure of assembled nanoparticles, presents alongside with the synthesis challenges, fundamental questions concerning the physical attributes of nanoscale systems. My goals are to create new highly controlled hybrid nanoparticle systems, focusing on combinations of semiconductors and metals, and to decipher the fundamental principles governing doping in nanoparticles and charge and energy transfer processes among components of the hybrid systems. The research addresses several key challenges: First, in synthesis, combining disparate material components into one hybrid nanoparticle system. Second, in self assembly, organizing a combination of semiconductor (SC) and metal nanoparticle building blocks into hybrid systems with controlled architecture. Third in fundamental physico-chemical questions pertaining to the unique attributes of the hybrid systems, constituting a key component of the research. A first aspect concerns doping of SC nanoparticles with metal atoms. A second aspect concerns light-induced charge transfer between the SC part and metal parts of the hybrid constructs. A third related aspect concerns energy transfer processes between the SC and metal components and the interplay between near-field enhancement and fluorescence quenching effects. Due to the new properties, significant impact on nanocrystal applications in solar energy harvesting, biological tagging, sensing, optics and electropotics is expected.
Summary
We target a frontier in nanocrystal science of combining disparate materials into a single hybrid nanosystem. This offers an intriguing route to engineer nanomaterials with multiple functionalities in ways that are not accessible in bulk materials or in molecules. Such control of novel material combinations on a single nanoparticle or in a super-structure of assembled nanoparticles, presents alongside with the synthesis challenges, fundamental questions concerning the physical attributes of nanoscale systems. My goals are to create new highly controlled hybrid nanoparticle systems, focusing on combinations of semiconductors and metals, and to decipher the fundamental principles governing doping in nanoparticles and charge and energy transfer processes among components of the hybrid systems. The research addresses several key challenges: First, in synthesis, combining disparate material components into one hybrid nanoparticle system. Second, in self assembly, organizing a combination of semiconductor (SC) and metal nanoparticle building blocks into hybrid systems with controlled architecture. Third in fundamental physico-chemical questions pertaining to the unique attributes of the hybrid systems, constituting a key component of the research. A first aspect concerns doping of SC nanoparticles with metal atoms. A second aspect concerns light-induced charge transfer between the SC part and metal parts of the hybrid constructs. A third related aspect concerns energy transfer processes between the SC and metal components and the interplay between near-field enhancement and fluorescence quenching effects. Due to the new properties, significant impact on nanocrystal applications in solar energy harvesting, biological tagging, sensing, optics and electropotics is expected.
Max ERC Funding
2 499 000 €
Duration
Start date: 2010-06-01, End date: 2015-05-31
Project acronym DEPICT
Project Design principles and controllability of protein circuits
Researcher (PI) Uri Alon
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary Cells use circuits of interacting proteins to respond to their environment. In the past decades, molecular biology has provided detailed knowledge on the proteins in these circuits and their interactions. To fully understand circuit function requires, in addition to molecular knowledge, new concepts that explain how multiple components work together to perform systems level functions. Our lab has been a leader in defining such concepts, based on combined experimental and theoretical study of well characterized circuits in bacteria and human cells. In this proposal we aim to find novel principles on how circuits resist fluctuations and errors, and how they can be controlled by drugs: (1) Why do key regulatory systems use bifunctional enzymes that catalyze antagonistic reactions (e.g. both kinase and phosphatase)? We will test the role of bifunctional enzymes in making circuits robust to variations in protein levels. (2) Why are some genes regulated by a repressor and others by an activator? We will test this in the context of reduction of errors in transcription control. (3) Are there principles that describe how drugs combine to affect protein dynamics in human cells? We will use a novel dynamic proteomics approach developed in our lab to explore how protein dynamics can be controlled by drug combinations. This research will define principles that unite our understanding of seemingly distinct biological systems, and explain their particular design in terms of systems-level functions. This understanding will help form the basis for a future medicine that rationally controls the state of the cell based on a detailed blueprint of their circuit design, and quantitative principles for the effects of drugs on this circuitry.
Summary
Cells use circuits of interacting proteins to respond to their environment. In the past decades, molecular biology has provided detailed knowledge on the proteins in these circuits and their interactions. To fully understand circuit function requires, in addition to molecular knowledge, new concepts that explain how multiple components work together to perform systems level functions. Our lab has been a leader in defining such concepts, based on combined experimental and theoretical study of well characterized circuits in bacteria and human cells. In this proposal we aim to find novel principles on how circuits resist fluctuations and errors, and how they can be controlled by drugs: (1) Why do key regulatory systems use bifunctional enzymes that catalyze antagonistic reactions (e.g. both kinase and phosphatase)? We will test the role of bifunctional enzymes in making circuits robust to variations in protein levels. (2) Why are some genes regulated by a repressor and others by an activator? We will test this in the context of reduction of errors in transcription control. (3) Are there principles that describe how drugs combine to affect protein dynamics in human cells? We will use a novel dynamic proteomics approach developed in our lab to explore how protein dynamics can be controlled by drug combinations. This research will define principles that unite our understanding of seemingly distinct biological systems, and explain their particular design in terms of systems-level functions. This understanding will help form the basis for a future medicine that rationally controls the state of the cell based on a detailed blueprint of their circuit design, and quantitative principles for the effects of drugs on this circuitry.
Max ERC Funding
2 261 440 €
Duration
Start date: 2010-03-01, End date: 2015-02-28