Project acronym 2DNanoSpec
Project Nanoscale Vibrational Spectroscopy of Sensitive 2D Molecular Materials
Researcher (PI) Renato ZENOBI
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Summary
I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Max ERC Funding
2 311 696 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym 3DEpi
Project Transgenerational epigenetic inheritance of chromatin states : the role of Polycomb and 3D chromosome architecture
Researcher (PI) Giacomo CAVALLI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary Epigenetic inheritance entails transmission of phenotypic traits not encoded in the DNA sequence and, in the most extreme case, Transgenerational Epigenetic Inheritance (TEI) involves transmission of memory through multiple generations. Very little is known on the mechanisms governing TEI and this is the subject of the present proposal. By transiently enhancing long-range chromatin interactions, we recently established isogenic Drosophila epilines that carry stable alternative epialleles, defined by differential levels of the Polycomb-dependent H3K27me3 mark. Furthermore, we extended our paradigm to natural phenotypes. These are ideal systems to study the role of Polycomb group (PcG) proteins and other components in regulating nuclear organization and epigenetic inheritance of chromatin states. The present project conjugates genetics, epigenomics, imaging and molecular biology to reach three critical aims.
Aim 1: Analysis of the molecular mechanisms regulating Polycomb-mediated TEI. We will identify the DNA, protein and RNA components that trigger and maintain transgenerational chromatin inheritance as well as their mechanisms of action.
Aim 2: Role of 3D genome organization in the regulation of TEI. We will analyze the developmental dynamics of TEI-inducing long-range chromatin interactions, identify chromatin components mediating 3D chromatin contacts and characterize their function in the TEI process.
Aim 3: Identification of a broader role of TEI during development. TEI might reflect a normal role of PcG components in the transmission of parental chromatin onto the next embryonic generation. We will explore this possibility by establishing other TEI paradigms and by relating TEI to the normal PcG function in these systems and in normal development.
This research program will unravel the biological significance and the molecular underpinnings of TEI and lead the way towards establishing this area of research into a consolidated scientific discipline.
Summary
Epigenetic inheritance entails transmission of phenotypic traits not encoded in the DNA sequence and, in the most extreme case, Transgenerational Epigenetic Inheritance (TEI) involves transmission of memory through multiple generations. Very little is known on the mechanisms governing TEI and this is the subject of the present proposal. By transiently enhancing long-range chromatin interactions, we recently established isogenic Drosophila epilines that carry stable alternative epialleles, defined by differential levels of the Polycomb-dependent H3K27me3 mark. Furthermore, we extended our paradigm to natural phenotypes. These are ideal systems to study the role of Polycomb group (PcG) proteins and other components in regulating nuclear organization and epigenetic inheritance of chromatin states. The present project conjugates genetics, epigenomics, imaging and molecular biology to reach three critical aims.
Aim 1: Analysis of the molecular mechanisms regulating Polycomb-mediated TEI. We will identify the DNA, protein and RNA components that trigger and maintain transgenerational chromatin inheritance as well as their mechanisms of action.
Aim 2: Role of 3D genome organization in the regulation of TEI. We will analyze the developmental dynamics of TEI-inducing long-range chromatin interactions, identify chromatin components mediating 3D chromatin contacts and characterize their function in the TEI process.
Aim 3: Identification of a broader role of TEI during development. TEI might reflect a normal role of PcG components in the transmission of parental chromatin onto the next embryonic generation. We will explore this possibility by establishing other TEI paradigms and by relating TEI to the normal PcG function in these systems and in normal development.
This research program will unravel the biological significance and the molecular underpinnings of TEI and lead the way towards establishing this area of research into a consolidated scientific discipline.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym 3DIMAGE
Project 3D Imaging Across Lengthscales: From Atoms to Grains
Researcher (PI) Paul Anthony Midgley
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary "Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Summary
"Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Max ERC Funding
2 337 330 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym 3DNANOMECH
Project Three-dimensional molecular resolution mapping of soft matter-liquid interfaces
Researcher (PI) Ricardo Garcia
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Summary
Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Max ERC Funding
2 499 928 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym 4D IMAGING
Project Towards 4D Imaging of Fundamental Processes on the Atomic and Sub-Atomic Scale
Researcher (PI) Ferenc Krausz
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Summary
State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym ABACUS
Project Ab-initio adiabatic-connection curves for density-functional analysis and construction
Researcher (PI) Trygve Ulf Helgaker
Host Institution (HI) UNIVERSITETET I OSLO
Country Norway
Call Details Advanced Grant (AdG), PE4, ERC-2010-AdG_20100224
Summary Quantum chemistry provides two approaches to molecular electronic-structure calculations: the systematically refinable but expensive many-body wave-function methods and the inexpensive but not systematically refinable Kohn Sham method of density-functional theory (DFT). The accuracy of Kohn Sham calculations is determined by the quality of the exchange correlation functional, from which the effects of exchange and correlation among the electrons are extracted using the density rather than the wave function. However, the exact exchange correlation functional is unknown—instead, many approximate forms have been developed, by fitting to experimental data or by satisfying exact relations. Here, a new approach to density-functional analysis and construction is proposed: the Lieb variation principle, usually regarded as conceptually important but impracticable. By invoking the Lieb principle, it becomes possible to approach the development of approximate functionals in a novel manner, being directly guided by the behaviour of exact functional, accurately calculated for a wide variety of chemical systems. In particular, this principle will be used to calculate ab-initio adiabatic connection curves, studying the exchange correlation functional for a fixed density as the electronic interactions are turned on from zero to one. Pilot calculations have indicated the feasibility of this approach in simple cases—here, a comprehensive set of adiabatic-connection curves will be generated and utilized for calibration, construction, and analysis of density functionals, the objective being to produce improved functionals for Kohn Sham calculations by modelling or fitting such curves. The ABACUS approach will be particularly important in cases where little experimental information is available—for example, for understanding and modelling the behaviour of the exchange correlation functional in electromagnetic fields.
Summary
Quantum chemistry provides two approaches to molecular electronic-structure calculations: the systematically refinable but expensive many-body wave-function methods and the inexpensive but not systematically refinable Kohn Sham method of density-functional theory (DFT). The accuracy of Kohn Sham calculations is determined by the quality of the exchange correlation functional, from which the effects of exchange and correlation among the electrons are extracted using the density rather than the wave function. However, the exact exchange correlation functional is unknown—instead, many approximate forms have been developed, by fitting to experimental data or by satisfying exact relations. Here, a new approach to density-functional analysis and construction is proposed: the Lieb variation principle, usually regarded as conceptually important but impracticable. By invoking the Lieb principle, it becomes possible to approach the development of approximate functionals in a novel manner, being directly guided by the behaviour of exact functional, accurately calculated for a wide variety of chemical systems. In particular, this principle will be used to calculate ab-initio adiabatic connection curves, studying the exchange correlation functional for a fixed density as the electronic interactions are turned on from zero to one. Pilot calculations have indicated the feasibility of this approach in simple cases—here, a comprehensive set of adiabatic-connection curves will be generated and utilized for calibration, construction, and analysis of density functionals, the objective being to produce improved functionals for Kohn Sham calculations by modelling or fitting such curves. The ABACUS approach will be particularly important in cases where little experimental information is available—for example, for understanding and modelling the behaviour of the exchange correlation functional in electromagnetic fields.
Max ERC Funding
2 017 932 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym ACCELERATES
Project Acceleration in Extreme Shocks: from the microphysics to laboratory and astrophysics scenarios
Researcher (PI) Luis Miguel De Oliveira E Silva
Host Institution (HI) INSTITUTO SUPERIOR TECNICO
Country Portugal
Call Details Advanced Grant (AdG), PE2, ERC-2010-AdG_20100224
Summary What is the origin of cosmic rays, what are the dominant acceleration mechanisms in relativistic shocks, how do cosmic rays self-consistently influence the shock dynamics, how are relativistic collisionless shocks formed are longstanding scientific questions, closely tied to extreme plasma physics processes, and where a close interplay between the micro-instabilities and the global dynamics is critical.
Relativistic shocks are closely connected with the propagation of intense streams of particles pervasive in many astrophysical scenarios. The possibility of exciting shocks in the laboratory will also be available very soon with multi-PW lasers or intense relativistic particle beams.
Computational modeling is now established as a prominent research tool, by enabling the fully kinetic modeling of these systems for the first time. With the fast paced developments in high performance computing, the time is ripe for a focused research programme on simulation-based studies of relativistic shocks. This proposal therefore focuses on using self-consistent ab initio massively parallel simulations to study the physics of relativistic shocks, bridging the gap between the multidimensional microphysics of shock onset, formation, and propagation and the global system dynamics. Particular focus will be given to the shock acceleration mechanisms and the radiation signatures of the various physical processes, with the goal of solving some of the central questions in plasma/relativistic phenomena in astrophysics and in the laboratory, and opening new avenues between theoretical/massive computational studies, laboratory experiments and astrophysical observations.
Summary
What is the origin of cosmic rays, what are the dominant acceleration mechanisms in relativistic shocks, how do cosmic rays self-consistently influence the shock dynamics, how are relativistic collisionless shocks formed are longstanding scientific questions, closely tied to extreme plasma physics processes, and where a close interplay between the micro-instabilities and the global dynamics is critical.
Relativistic shocks are closely connected with the propagation of intense streams of particles pervasive in many astrophysical scenarios. The possibility of exciting shocks in the laboratory will also be available very soon with multi-PW lasers or intense relativistic particle beams.
Computational modeling is now established as a prominent research tool, by enabling the fully kinetic modeling of these systems for the first time. With the fast paced developments in high performance computing, the time is ripe for a focused research programme on simulation-based studies of relativistic shocks. This proposal therefore focuses on using self-consistent ab initio massively parallel simulations to study the physics of relativistic shocks, bridging the gap between the multidimensional microphysics of shock onset, formation, and propagation and the global system dynamics. Particular focus will be given to the shock acceleration mechanisms and the radiation signatures of the various physical processes, with the goal of solving some of the central questions in plasma/relativistic phenomena in astrophysics and in the laboratory, and opening new avenues between theoretical/massive computational studies, laboratory experiments and astrophysical observations.
Max ERC Funding
1 588 800 €
Duration
Start date: 2011-06-01, End date: 2016-07-31
Project acronym AccelOnChip
Project Attosecond physics, free electron quantum optics, photon generation and radiation biology with the accelerator on a photonic chip
Researcher (PI) Peter HOMMELHOFF
Host Institution (HI) FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG
Country Germany
Call Details Advanced Grant (AdG), PE2, ERC-2019-ADG
Summary Resting on our demonstration of laser-driven nanophotonics-based particle acceleration, we propose to build a miniature particle accelerator on a photonic chip, comprising high gradient acceleration and fully optical field-based electron control. The resulting electron beam has outstanding space-time properties: It is bunched on sub-femtosecond timescales, is nanometres wide and coherent. We aim at utilizing this new form of all-optical free electron control in a broad research program with five exciting objectives:
(1) Build a 5 MeV accelerator on a photonic chip in a shoebox-sized vessel,
(2) Perform ultrafast diffraction with attosecond and even zeptosecond electron pulses,
(3) Generate photons on chip at various wavelengths (IR to x-ray),
(4) Couple quantum-coherently electron wavepackets and light in multiple interaction zones, and
(5) Conduct radiobiological experiments, akin to the new FLASH radiotherapy and Microbeam cell treat-ment.
AccelOnChip will enable five science objectives potentially shifting the horizons of today’s knowledge and capabilities around ultrafast electron imaging, photon generation, (quantum) electron-light coupling, and radiotherapy dramatically. Moreover, AccelOnChip promises to democratize accelerators: the accelerator on a chip will be based on inexpensive nanofabrication technology. We foresee that every university lab can have access to particle and light sources, today only accessible at large facilities. Last, AccelOnChip will take decisive steps towards an ultracompact electron beam radiation device to be put into the tip of a catheter, a potentially disruptive radiation therapy device facilitating new treatment forms. AccelOnChip is a cross-disciplinary high risk/high return project combining and benefiting nanophotonics, accelerator science, ultra-fast physics, materials science, coherent light-matter coupling, light generation, and radiology - and is based on my group’s unique expertise acquired in recent years.
Summary
Resting on our demonstration of laser-driven nanophotonics-based particle acceleration, we propose to build a miniature particle accelerator on a photonic chip, comprising high gradient acceleration and fully optical field-based electron control. The resulting electron beam has outstanding space-time properties: It is bunched on sub-femtosecond timescales, is nanometres wide and coherent. We aim at utilizing this new form of all-optical free electron control in a broad research program with five exciting objectives:
(1) Build a 5 MeV accelerator on a photonic chip in a shoebox-sized vessel,
(2) Perform ultrafast diffraction with attosecond and even zeptosecond electron pulses,
(3) Generate photons on chip at various wavelengths (IR to x-ray),
(4) Couple quantum-coherently electron wavepackets and light in multiple interaction zones, and
(5) Conduct radiobiological experiments, akin to the new FLASH radiotherapy and Microbeam cell treat-ment.
AccelOnChip will enable five science objectives potentially shifting the horizons of today’s knowledge and capabilities around ultrafast electron imaging, photon generation, (quantum) electron-light coupling, and radiotherapy dramatically. Moreover, AccelOnChip promises to democratize accelerators: the accelerator on a chip will be based on inexpensive nanofabrication technology. We foresee that every university lab can have access to particle and light sources, today only accessible at large facilities. Last, AccelOnChip will take decisive steps towards an ultracompact electron beam radiation device to be put into the tip of a catheter, a potentially disruptive radiation therapy device facilitating new treatment forms. AccelOnChip is a cross-disciplinary high risk/high return project combining and benefiting nanophotonics, accelerator science, ultra-fast physics, materials science, coherent light-matter coupling, light generation, and radiology - and is based on my group’s unique expertise acquired in recent years.
Max ERC Funding
2 498 508 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym AdS-CFT-solvable
Project Origins of integrability in AdS/CFT correspondence
Researcher (PI) Vladimir Kazakov
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Advanced Grant (AdG), PE2, ERC-2012-ADG_20120216
Summary Fundamental interactions in nature are well described by quantum gauge fields in 4 space-time dimensions (4d). When the strength of gauge interaction is weak the Feynman perturbation techniques are very efficient for the description of most of the experimentally observable consequences of the Standard model and for the study of high energy processes in QCD.
But in the intermediate and strong coupling regime, such as the relatively small energies in QCD, the perturbation theory fails leaving us with no reliable analytic methods (except the Monte-Carlo simulation). The project aims at working out new analytic and computational methods for strongly coupled gauge theories in 4d. We will employ for that two important discoveries: 1) the gauge-string duality (AdS/CFT correspondence) relating certain strongly coupled gauge Conformal Field
Theories to the weakly coupled string theories on Anty-deSitter space; 2) the solvability, or integrability of maximally supersymmetric (N=4) 4d super Yang-Mills (SYM) theory in multicolor limit. Integrability made possible pioneering exact numerical and analytic results in the N=4 multicolor SYM at any coupling, effectively summing up all 4d Feynman diagrams. Recently, we conjectured a system of functional equations - the AdS/CFT Y-system – for the exact spectrum of anomalous dimensions of all local operators in N=4 SYM. The conjecture has passed all available checks. My project is aimed at the understanding of origins of this, still mysterious integrability. Deriving the AdS/CFT Y-system from the first principles on both sides of gauge-string duality should provide a long-awaited proof of the AdS/CFT correspondence itself. I plan to use the Y-system to study the systematic weak and strong coupling expansions and the so called BFKL limit, as well as for calculation of multi-point correlation functions of N=4 SYM. We hope on new insights into the strong coupling dynamics of less supersymmetric gauge theories and of QCD.
Summary
Fundamental interactions in nature are well described by quantum gauge fields in 4 space-time dimensions (4d). When the strength of gauge interaction is weak the Feynman perturbation techniques are very efficient for the description of most of the experimentally observable consequences of the Standard model and for the study of high energy processes in QCD.
But in the intermediate and strong coupling regime, such as the relatively small energies in QCD, the perturbation theory fails leaving us with no reliable analytic methods (except the Monte-Carlo simulation). The project aims at working out new analytic and computational methods for strongly coupled gauge theories in 4d. We will employ for that two important discoveries: 1) the gauge-string duality (AdS/CFT correspondence) relating certain strongly coupled gauge Conformal Field
Theories to the weakly coupled string theories on Anty-deSitter space; 2) the solvability, or integrability of maximally supersymmetric (N=4) 4d super Yang-Mills (SYM) theory in multicolor limit. Integrability made possible pioneering exact numerical and analytic results in the N=4 multicolor SYM at any coupling, effectively summing up all 4d Feynman diagrams. Recently, we conjectured a system of functional equations - the AdS/CFT Y-system – for the exact spectrum of anomalous dimensions of all local operators in N=4 SYM. The conjecture has passed all available checks. My project is aimed at the understanding of origins of this, still mysterious integrability. Deriving the AdS/CFT Y-system from the first principles on both sides of gauge-string duality should provide a long-awaited proof of the AdS/CFT correspondence itself. I plan to use the Y-system to study the systematic weak and strong coupling expansions and the so called BFKL limit, as well as for calculation of multi-point correlation functions of N=4 SYM. We hope on new insights into the strong coupling dynamics of less supersymmetric gauge theories and of QCD.
Max ERC Funding
1 456 140 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym AFTERTHEGOLDRUSH
Project Addressing global sustainability challenges by changing perceptions in catalyst design
Researcher (PI) Graham John Hutchings
Host Institution (HI) CARDIFF UNIVERSITY
Country United Kingdom
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary One of the greatest challenges facing society is the sustainability of resources. At present, a step change in the sustainable use of resources is needed and catalysis lies at the heart of the solution by providing new routes to carbon dioxide mitigation, energy security and water conservation. It is clear that new high efficiency game-changing catalysts are required to meet the challenge. This proposal will focus on excellence in catalyst design by learning from recent step change advances in gold catalysis by challenging perceptions. Intense interest in gold catalysts over the past two decades has accelerated our understanding of gold particle-size effects, gold-support and gold-metal interactions, the interchange between atomic and ionic gold species, and the role of the gold-support interface in creating and maintaining catalytic activity. The field has also driven the development of cutting-edge techniques, particularly in microscopy and transient kinetics, providing detailed structural characterisation on the nano-scale and probing the short-range and often short-lived interactions. By comparison, our understanding of other metal catalysts has remained relatively static.
The proposed programme will engender a step change in the design of supported-metal catalysts, by exploiting the learning and the techniques emerging from gold catalysis. The research will be set out in two themes. In Theme 1 two established key grand challenges will be attacked; namely, energy vectors and greenhouse gas control. Theme 2 will address two new and emerging grand challenges in catalysis namely the effective low temperature activation of primary carbon hydrogen bonds and CO2 utilisation where instead of treating CO2 as a thermodynamic endpoint, the aim will be to re-use it as a feedstock for bulk chemical and fuel production. The legacy of the research will be the development of a new catalyst design approach that will provide a tool box for future catalyst development.
Summary
One of the greatest challenges facing society is the sustainability of resources. At present, a step change in the sustainable use of resources is needed and catalysis lies at the heart of the solution by providing new routes to carbon dioxide mitigation, energy security and water conservation. It is clear that new high efficiency game-changing catalysts are required to meet the challenge. This proposal will focus on excellence in catalyst design by learning from recent step change advances in gold catalysis by challenging perceptions. Intense interest in gold catalysts over the past two decades has accelerated our understanding of gold particle-size effects, gold-support and gold-metal interactions, the interchange between atomic and ionic gold species, and the role of the gold-support interface in creating and maintaining catalytic activity. The field has also driven the development of cutting-edge techniques, particularly in microscopy and transient kinetics, providing detailed structural characterisation on the nano-scale and probing the short-range and often short-lived interactions. By comparison, our understanding of other metal catalysts has remained relatively static.
The proposed programme will engender a step change in the design of supported-metal catalysts, by exploiting the learning and the techniques emerging from gold catalysis. The research will be set out in two themes. In Theme 1 two established key grand challenges will be attacked; namely, energy vectors and greenhouse gas control. Theme 2 will address two new and emerging grand challenges in catalysis namely the effective low temperature activation of primary carbon hydrogen bonds and CO2 utilisation where instead of treating CO2 as a thermodynamic endpoint, the aim will be to re-use it as a feedstock for bulk chemical and fuel production. The legacy of the research will be the development of a new catalyst design approach that will provide a tool box for future catalyst development.
Max ERC Funding
2 279 785 €
Duration
Start date: 2012-04-01, End date: 2017-03-31