Project acronym 3D-FABRIC
Project 3D Flow Analysis in Bijels Reconfigured for Interfacial Catalysis
Researcher (PI) Martin F. HAASE
Host Institution (HI) UNIVERSITEIT UTRECHT
Country Netherlands
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary The objective of this proposal is to determine the unknown criteria for convective cross-flow in bicontinuous interfacially jammed emulsion gels (bijels). Based on this, we will answer the question: Can continuously operated interfacial catalysis be realized in bijel cross-flow reactors? Demonstrating this potential will introduce a broadly applicable chemical technology, replacing wasteful chemical processes that require organic solvents. We will achieve our objective in three steps:
(a) Control over bijel structure and properties. Bijels will be formed with a selection of functional inorganic colloidal particles. Nanoparticle surface modifications will be developed and extensively characterized. General principles for the parameters determining bijel structures and properties will be established based on confocal and electron microscopy characterization. These principles will enable unprecedented control over bijel formation and will allow for designing desired properties.
(b) Convective flow in bijels. The mechanical strength of bijels will be tailored and measured. With mechanically robust bijels, the influence of size and organization of oil/water channels on convective mass transfer in bijels will be investigated. To this end, a bijel mass transfer apparatus fabricated by 3d-printing of bijel fibers and soft photolithography will be introduced. In conjunction with the following objective, the analysis of convective flows in bijels will facilitate a thorough description of their structure/function relationships.
(c) Biphasic chemical reactions in STrIPS bijel cross-flow reactors. First, continuous extraction in bijels will be realized. Next, conditions to carry out continuously-operated, phase transfer catalysis of well-known model reactions in bijels will be determined. Both processes will be characterized in-situ and in 3-dimensions by confocal microscopy of fluorescent phase transfer reactions in transparent bijels.
Summary
The objective of this proposal is to determine the unknown criteria for convective cross-flow in bicontinuous interfacially jammed emulsion gels (bijels). Based on this, we will answer the question: Can continuously operated interfacial catalysis be realized in bijel cross-flow reactors? Demonstrating this potential will introduce a broadly applicable chemical technology, replacing wasteful chemical processes that require organic solvents. We will achieve our objective in three steps:
(a) Control over bijel structure and properties. Bijels will be formed with a selection of functional inorganic colloidal particles. Nanoparticle surface modifications will be developed and extensively characterized. General principles for the parameters determining bijel structures and properties will be established based on confocal and electron microscopy characterization. These principles will enable unprecedented control over bijel formation and will allow for designing desired properties.
(b) Convective flow in bijels. The mechanical strength of bijels will be tailored and measured. With mechanically robust bijels, the influence of size and organization of oil/water channels on convective mass transfer in bijels will be investigated. To this end, a bijel mass transfer apparatus fabricated by 3d-printing of bijel fibers and soft photolithography will be introduced. In conjunction with the following objective, the analysis of convective flows in bijels will facilitate a thorough description of their structure/function relationships.
(c) Biphasic chemical reactions in STrIPS bijel cross-flow reactors. First, continuous extraction in bijels will be realized. Next, conditions to carry out continuously-operated, phase transfer catalysis of well-known model reactions in bijels will be determined. Both processes will be characterized in-situ and in 3-dimensions by confocal microscopy of fluorescent phase transfer reactions in transparent bijels.
Max ERC Funding
1 905 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym ActiveBioFluids
Project Origins of Collective Motion in Active Biofluids
Researcher (PI) Daniel TAM
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Country Netherlands
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary The emergence of coherent behaviour is ubiquitous in the natural world and has long captivated biologists and physicists alike. One area of growing interest is the collective motion and synchronization arising within and between simple motile organisms. My goal is to develop and use a novel experimental approach to unravel the origins of spontaneous coherent motion in three model systems of biofluids: (1) the synchronization of the two flagella of green algae Chlamydomonas Rheinhardtii, (2) the metachronal wave in the cilia of protist Paramecium and (3) the collective motion of swimming microorganisms in active suspensions. Understanding the mechanisms leading to collective motion is of tremendous importance because it is crucial to many biological processes such as mechanical signal transduction, embryonic development and biofilm formation.
Up till now, most of the work has been theoretical and has led to the dominant view that hydrodynamic interactions are the main driving force for synchronization and collective motion. Recent experiments have challenged this view and highlighted the importance of direct mechanical contact. New experimental studies are now crucially needed. The state-of-the-art of experimental approaches consists of observations of unperturbed cells. The key innovation in our approach is to dynamically interact with microorganisms in real-time, at the relevant time and length scales. I will investigate the origins of coherent motion by reproducing synthetically the mechanical signatures of physiological flows and direct mechanical interactions and track precisely the response of the organism to the perturbations. Our new approach will incorporate optical tweezers to interact with motile cells, and a unique μ-Tomographic PIV setup to track their 3D micron-scale motion.
This proposal tackles a timely question in biophysics and will yield new insight into the fundamental principles underlying collective motion in active biological matter.
Summary
The emergence of coherent behaviour is ubiquitous in the natural world and has long captivated biologists and physicists alike. One area of growing interest is the collective motion and synchronization arising within and between simple motile organisms. My goal is to develop and use a novel experimental approach to unravel the origins of spontaneous coherent motion in three model systems of biofluids: (1) the synchronization of the two flagella of green algae Chlamydomonas Rheinhardtii, (2) the metachronal wave in the cilia of protist Paramecium and (3) the collective motion of swimming microorganisms in active suspensions. Understanding the mechanisms leading to collective motion is of tremendous importance because it is crucial to many biological processes such as mechanical signal transduction, embryonic development and biofilm formation.
Up till now, most of the work has been theoretical and has led to the dominant view that hydrodynamic interactions are the main driving force for synchronization and collective motion. Recent experiments have challenged this view and highlighted the importance of direct mechanical contact. New experimental studies are now crucially needed. The state-of-the-art of experimental approaches consists of observations of unperturbed cells. The key innovation in our approach is to dynamically interact with microorganisms in real-time, at the relevant time and length scales. I will investigate the origins of coherent motion by reproducing synthetically the mechanical signatures of physiological flows and direct mechanical interactions and track precisely the response of the organism to the perturbations. Our new approach will incorporate optical tweezers to interact with motile cells, and a unique μ-Tomographic PIV setup to track their 3D micron-scale motion.
This proposal tackles a timely question in biophysics and will yield new insight into the fundamental principles underlying collective motion in active biological matter.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ADHESWITCHES
Project Adhesion switches in cancer and development: from in vivo to synthetic biology
Researcher (PI) Mari Johanna Ivaska
Host Institution (HI) TURUN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), LS3, ERC-2013-CoG
Summary Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Summary
Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Max ERC Funding
1 887 910 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ALEM
Project ADDITIONAL LOSSES IN ELECTRICAL MACHINES
Researcher (PI) Matti Antero Arkkio
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Advanced Grant (AdG), PE8, ERC-2013-ADG
Summary "Electrical motors consume about 40 % of the electrical energy produced in the European Union. About 90 % of this energy is converted to mechanical work. However, 0.5-2.5 % of it goes to so called additional load losses whose exact origins are unknown. Our ambitious aim is to reveal the origins of these losses, build up numerical tools for modeling them and optimize electrical motors to minimize the losses.
As the hypothesis of the research, we assume that the additional losses mainly result from the deterioration of the core materials during the manufacturing process of the machine. By calorimetric measurements, we have found that the core losses of electrical machines may be twice as large as comprehensive loss models predict. The electrical steel sheets are punched, welded together and shrink fit to the frame. This causes residual strains in the core sheets deteriorating their magnetic characteristics. The cutting burrs make galvanic contacts between the sheets and form paths for inter-lamination currents. Another potential source of additional losses are the circulating currents between the parallel strands of random-wound armature windings. The stochastic nature of these potential sources of additional losses puts more challenge on the research.
We shall develop a physical loss model that couples the mechanical strains and electromagnetic losses in electrical steel sheets and apply the new model for comprehensive loss analysis of electrical machines. The stochastic variables related to the core losses and circulating-current losses will be discretized together with the temporal and spatial discretization of the electromechanical field variables. The numerical stochastic loss model will be used to search for such machine constructions that are insensitive to the manufacturing defects. We shall validate the new numerical loss models by electromechanical and calorimetric measurements."
Summary
"Electrical motors consume about 40 % of the electrical energy produced in the European Union. About 90 % of this energy is converted to mechanical work. However, 0.5-2.5 % of it goes to so called additional load losses whose exact origins are unknown. Our ambitious aim is to reveal the origins of these losses, build up numerical tools for modeling them and optimize electrical motors to minimize the losses.
As the hypothesis of the research, we assume that the additional losses mainly result from the deterioration of the core materials during the manufacturing process of the machine. By calorimetric measurements, we have found that the core losses of electrical machines may be twice as large as comprehensive loss models predict. The electrical steel sheets are punched, welded together and shrink fit to the frame. This causes residual strains in the core sheets deteriorating their magnetic characteristics. The cutting burrs make galvanic contacts between the sheets and form paths for inter-lamination currents. Another potential source of additional losses are the circulating currents between the parallel strands of random-wound armature windings. The stochastic nature of these potential sources of additional losses puts more challenge on the research.
We shall develop a physical loss model that couples the mechanical strains and electromagnetic losses in electrical steel sheets and apply the new model for comprehensive loss analysis of electrical machines. The stochastic variables related to the core losses and circulating-current losses will be discretized together with the temporal and spatial discretization of the electromechanical field variables. The numerical stochastic loss model will be used to search for such machine constructions that are insensitive to the manufacturing defects. We shall validate the new numerical loss models by electromechanical and calorimetric measurements."
Max ERC Funding
2 489 949 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ALUFIX
Project Friction stir processing based local damage mitigation and healing in aluminium alloys
Researcher (PI) Aude SIMAR
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Country Belgium
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Summary
ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Max ERC Funding
1 497 447 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym ATM-GTP
Project Atmospheric Gas-to-Particle conversion
Researcher (PI) Markku KULMALA
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Advanced Grant (AdG), PE10, ERC-2016-ADG
Summary Atmospheric Gas-to-Particle conversion (ATM-GTP) is a 5-year project focusing on one of the most critical atmospheric processes relevant to global climate and air quality: the first steps of atmospheric aerosol particle formation and growth. The project will concentrate on the currently lacking environmentally-specific knowledge about the interacting, non-linear, physical and chemical atmospheric processes associated with nano-scale gas-to-particle conversion (GTP). The main scientific objective of ATM-GTP is to create a deep understanding on atmospheric GTP taking place at the sub-5 nm size range, particularly in heavily-polluted Chinese mega cities like Beijing and in pristine environments like Siberia and Nordic high-latitude regions. We also aim to find out how nano-GTM is associated with air quality-climate interactions and feedbacks. We are interested in quantifying the effect of nano-GTP on the COBACC (Continental Biosphere-Aerosol-Cloud-Climate) feedback loop that is important in Arctic and boreal regions. Our approach enables to point out the effective reduction mechanisms of the secondary air pollution by a factor of 5-10 and to make reliable estimates of the global and regional aerosol loads, including anthropogenic and biogenic contributions to these loads. We can estimate the future role of Northern Hemispheric biosphere in reducing the global radiative forcing via the quantified feedbacks. The project is carried out by the world-leading scientist in atmospheric aerosol science, being also one of the founders of terrestrial ecosystem meteorology, together with his research team. The project uses novel infrastructures including SMEAR (Stations Measuring Ecosystem Atmospheric Relations) stations, related modelling platforms and regional data from Russia and China. The work will be carried out in synergy with several national, Nordic and EU research-innovation projects: Finnish Center of Excellence-ATM, Nordic CoE-CRAICC and EU-FP7-BACCHUS.
Summary
Atmospheric Gas-to-Particle conversion (ATM-GTP) is a 5-year project focusing on one of the most critical atmospheric processes relevant to global climate and air quality: the first steps of atmospheric aerosol particle formation and growth. The project will concentrate on the currently lacking environmentally-specific knowledge about the interacting, non-linear, physical and chemical atmospheric processes associated with nano-scale gas-to-particle conversion (GTP). The main scientific objective of ATM-GTP is to create a deep understanding on atmospheric GTP taking place at the sub-5 nm size range, particularly in heavily-polluted Chinese mega cities like Beijing and in pristine environments like Siberia and Nordic high-latitude regions. We also aim to find out how nano-GTM is associated with air quality-climate interactions and feedbacks. We are interested in quantifying the effect of nano-GTP on the COBACC (Continental Biosphere-Aerosol-Cloud-Climate) feedback loop that is important in Arctic and boreal regions. Our approach enables to point out the effective reduction mechanisms of the secondary air pollution by a factor of 5-10 and to make reliable estimates of the global and regional aerosol loads, including anthropogenic and biogenic contributions to these loads. We can estimate the future role of Northern Hemispheric biosphere in reducing the global radiative forcing via the quantified feedbacks. The project is carried out by the world-leading scientist in atmospheric aerosol science, being also one of the founders of terrestrial ecosystem meteorology, together with his research team. The project uses novel infrastructures including SMEAR (Stations Measuring Ecosystem Atmospheric Relations) stations, related modelling platforms and regional data from Russia and China. The work will be carried out in synergy with several national, Nordic and EU research-innovation projects: Finnish Center of Excellence-ATM, Nordic CoE-CRAICC and EU-FP7-BACCHUS.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym ATMNUCLE
Project Atmospheric nucleation: from molecular to global scale
Researcher (PI) Markku Tapio Kulmala
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Advanced Grant (AdG), PE10, ERC-2008-AdG
Summary Atmospheric aerosol particles and trace gases affect the quality of our life in many ways (e.g. health effects, changes in climate and hydrological cycle). Trace gases and atmospheric aerosols are tightly connected via physical, chemical, meteorological and biological processes occurring in the atmosphere and at the atmosphere-biosphere interface. One important phenomenon is atmospheric aerosol formation, which involves the production of nanometer-size particles by nucleation and their growth to detectable sizes. The main scientific objectives of this project are 1) to quantify the mechanisms responsible for atmospheric new particle formation and 2) to find out how important this process is for the behaviour of the global aerosol system and, ultimately, for the whole climate system. Our scientific plan is designed as a research chain that aims to advance our understanding of climate and air quality through a series of connected activities. We start from molecular simulations and laboratory measurements to understand nucleation and aerosol thermodynamic processes. We measure nanoparticles and atmospheric clusters at 15-20 sites all around the world using state of the art instrumentation and study feedbacks and interactions between climate and biosphere. With these atmospheric boundary layer studies we form a link to regional-scale processes and further to global-scale phenomena. In order to be able to simulate global climate and air quality, the most recent progress on this chain of processes must be compiled, integrated and implemented in Climate Change and Air Quality numerical models via novel parameterizations.
Summary
Atmospheric aerosol particles and trace gases affect the quality of our life in many ways (e.g. health effects, changes in climate and hydrological cycle). Trace gases and atmospheric aerosols are tightly connected via physical, chemical, meteorological and biological processes occurring in the atmosphere and at the atmosphere-biosphere interface. One important phenomenon is atmospheric aerosol formation, which involves the production of nanometer-size particles by nucleation and their growth to detectable sizes. The main scientific objectives of this project are 1) to quantify the mechanisms responsible for atmospheric new particle formation and 2) to find out how important this process is for the behaviour of the global aerosol system and, ultimately, for the whole climate system. Our scientific plan is designed as a research chain that aims to advance our understanding of climate and air quality through a series of connected activities. We start from molecular simulations and laboratory measurements to understand nucleation and aerosol thermodynamic processes. We measure nanoparticles and atmospheric clusters at 15-20 sites all around the world using state of the art instrumentation and study feedbacks and interactions between climate and biosphere. With these atmospheric boundary layer studies we form a link to regional-scale processes and further to global-scale phenomena. In order to be able to simulate global climate and air quality, the most recent progress on this chain of processes must be compiled, integrated and implemented in Climate Change and Air Quality numerical models via novel parameterizations.
Max ERC Funding
2 000 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym ATTACK
Project Pressured to Attack: How Carrying-Capacity Stress Creates and Shapes Intergroup Conflict
Researcher (PI) Carsten DE DREU
Host Institution (HI) UNIVERSITEIT LEIDEN
Country Netherlands
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary Throughout history, what has been causing tremendous suffering is groups of people fighting each other. While behavioral science research has advanced our understanding of such intergroup conflict, it has exclusively focused on micro-level processes within and between groups at conflict. Disciplines that employ a more historical perspective like climate studies or political geography report that macro-level pressures due to changes in climate or economic scarcity can go along with social unrest and wars. How do these macro-level pressures relate to micro-level processes? Do they both occur independently, or do macro-level pressures trigger micro-level processes that cause intergroup conflict? And if so, which micro-level processes are triggered, and how?
With unavoidable signs of climate change and increasing resource scarcities, answers to these questions are urgently needed. Here I propose carrying-capacity stress (CCS) as the missing link between macro-level pressures and micro-level processes. A group experiences CCS when its resources do not suffice to maintain its functionality. CCS is a function of macro-level pressures and creates intergroup conflict because it impacts micro-level motivation to contribute to one’s group’s fighting capacity and shapes the coordination of individual contributions to out-group aggression through emergent norms, communication and leadership.
To test these propositions I develop a parametric model of CCS that is amenable to measurement and experimentation, and use techniques used in my work on conflict and cooperation: Meta-analyses and time-series analysis of macro-level historical data; experiments on intergroup conflict; and measurement of neuro-hormonal correlates of cooperation and conflict. In combination, this project provides novel multi-level conflict theory that integrates macro-level discoveries in climate research and political geography with micro-level processes uncovered in the biobehavioral sciences
Summary
Throughout history, what has been causing tremendous suffering is groups of people fighting each other. While behavioral science research has advanced our understanding of such intergroup conflict, it has exclusively focused on micro-level processes within and between groups at conflict. Disciplines that employ a more historical perspective like climate studies or political geography report that macro-level pressures due to changes in climate or economic scarcity can go along with social unrest and wars. How do these macro-level pressures relate to micro-level processes? Do they both occur independently, or do macro-level pressures trigger micro-level processes that cause intergroup conflict? And if so, which micro-level processes are triggered, and how?
With unavoidable signs of climate change and increasing resource scarcities, answers to these questions are urgently needed. Here I propose carrying-capacity stress (CCS) as the missing link between macro-level pressures and micro-level processes. A group experiences CCS when its resources do not suffice to maintain its functionality. CCS is a function of macro-level pressures and creates intergroup conflict because it impacts micro-level motivation to contribute to one’s group’s fighting capacity and shapes the coordination of individual contributions to out-group aggression through emergent norms, communication and leadership.
To test these propositions I develop a parametric model of CCS that is amenable to measurement and experimentation, and use techniques used in my work on conflict and cooperation: Meta-analyses and time-series analysis of macro-level historical data; experiments on intergroup conflict; and measurement of neuro-hormonal correlates of cooperation and conflict. In combination, this project provides novel multi-level conflict theory that integrates macro-level discoveries in climate research and political geography with micro-level processes uncovered in the biobehavioral sciences
Max ERC Funding
2 490 383 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym BAM
Project Becoming A Minority
Researcher (PI) Maurice CRUL
Host Institution (HI) STICHTING VU
Country Netherlands
Call Details Advanced Grant (AdG), SH3, ERC-2016-ADG
Summary In the last forty years, researchers in the Field of Migration and Ethnic Studies looked at the integration of migrants and their descendants. Concepts, methodological tools and theoretical frameworks have been developed to measure and predict integration outcomes both across different ethnic groups and in comparison with people of native descent. But are we also looking into the actual integration of the receiving group of native ‘white’ descent in city contexts where they have become a numerical minority themselves? In cities like Amsterdam, now only one in three youngsters under age fifteen is of native descent. This situation, referred to as a majority-minority context, is a new phenomenon in Western Europe and it presents itself as one of the most important societal and psychological transformations of our time. I argue that the field of migration and ethnic studies is stagnating because of the one-sided focus on migrants and their children. This is even more urgent given the increased ant-immigrant vote. These pressing scientific and societal reasons pushed me to develop the project BAM (Becoming A Minority). The project will be executed in three harbor cities, Rotterdam, Antwerp and Malmö, and three service sector cities, Amsterdam, Frankfurt and Vienna. BAM consists of 5 subprojects: (1) A meta-analysis of secondary data on people of native ‘white’ descent in the six research sites; (2) A newly developed survey for the target group; (3) An analysis of critical circumstances of encounter that trigger either positive or rather negative responses to increased ethnic diversity (4) Experimental diversity labs to test under which circumstances people will change their attitudes or their actions towards increased ethnic diversity; (5) The formulation of a new theory of integration that includes the changed position of the group of native ‘white’ descent as an important actor.
Summary
In the last forty years, researchers in the Field of Migration and Ethnic Studies looked at the integration of migrants and their descendants. Concepts, methodological tools and theoretical frameworks have been developed to measure and predict integration outcomes both across different ethnic groups and in comparison with people of native descent. But are we also looking into the actual integration of the receiving group of native ‘white’ descent in city contexts where they have become a numerical minority themselves? In cities like Amsterdam, now only one in three youngsters under age fifteen is of native descent. This situation, referred to as a majority-minority context, is a new phenomenon in Western Europe and it presents itself as one of the most important societal and psychological transformations of our time. I argue that the field of migration and ethnic studies is stagnating because of the one-sided focus on migrants and their children. This is even more urgent given the increased ant-immigrant vote. These pressing scientific and societal reasons pushed me to develop the project BAM (Becoming A Minority). The project will be executed in three harbor cities, Rotterdam, Antwerp and Malmö, and three service sector cities, Amsterdam, Frankfurt and Vienna. BAM consists of 5 subprojects: (1) A meta-analysis of secondary data on people of native ‘white’ descent in the six research sites; (2) A newly developed survey for the target group; (3) An analysis of critical circumstances of encounter that trigger either positive or rather negative responses to increased ethnic diversity (4) Experimental diversity labs to test under which circumstances people will change their attitudes or their actions towards increased ethnic diversity; (5) The formulation of a new theory of integration that includes the changed position of the group of native ‘white’ descent as an important actor.
Max ERC Funding
2 499 714 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym Bio-Plan
Project Bio-Inspired Microfluidics Platform for Biomechanical Analysis
Researcher (PI) Jacob Marinus Jan DEN TOONDER
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Country Netherlands
Call Details Advanced Grant (AdG), PE8, ERC-2018-ADG
Summary Biomechanical interactions between cells and their environment are essential in almost any biological process, from embryonic development to organ function to diseases. Hence, biomechanical interactions are crucial for health and disease. Examples are hydrodynamic interactions through fluid flow, and forces acting directly on cells. Existing methods to analyze and understand these interactions are limited however, since they do not offer the required combination of precisely controlled flow and accurate applying and sensing of forces. Also, they often lack a physiological environment. A breakthrough in biomechanical analysis is therefore highly needed. We will realize a novel microfluidic platform for biomechanical analysis with unprecedented possibilities of controlling fluid flow and applying and sensing time-dependent forces at subcellular scales in controlled environments. The platform will be uniquely based on bio-inspired magnetic artificial cilia, rather than on conventional microfluidic valves and pumps. Cilia are microscopic hairs ubiquitously present in nature, acting both as actuators and sensors, essential for swimming of microorganisms, transport of dirt out of our airways, and sensing of sound, i.e. they exactly fulfill functions needed in biomechanical analysis. We will develop novel materials and fabrication methods to realize microscopic polymeric artificial cilia, and integrate these in microfluidic devices. Magnetic actuation and optical readout systems complete the platform. We will apply the novel platform to address three fundamental and unresolved biomechanical questions: 1. How do hydrodynamic interactions with actuated cilia steer cellular and particle transport? 2. How do local and dynamic mechanical forces on cells fundamentally influence their motility and differentiation? 3. How do hydrodynamic interactions between cilia steer embryonic development? This unique platform will enable to address many other future biomechanical questions.
Summary
Biomechanical interactions between cells and their environment are essential in almost any biological process, from embryonic development to organ function to diseases. Hence, biomechanical interactions are crucial for health and disease. Examples are hydrodynamic interactions through fluid flow, and forces acting directly on cells. Existing methods to analyze and understand these interactions are limited however, since they do not offer the required combination of precisely controlled flow and accurate applying and sensing of forces. Also, they often lack a physiological environment. A breakthrough in biomechanical analysis is therefore highly needed. We will realize a novel microfluidic platform for biomechanical analysis with unprecedented possibilities of controlling fluid flow and applying and sensing time-dependent forces at subcellular scales in controlled environments. The platform will be uniquely based on bio-inspired magnetic artificial cilia, rather than on conventional microfluidic valves and pumps. Cilia are microscopic hairs ubiquitously present in nature, acting both as actuators and sensors, essential for swimming of microorganisms, transport of dirt out of our airways, and sensing of sound, i.e. they exactly fulfill functions needed in biomechanical analysis. We will develop novel materials and fabrication methods to realize microscopic polymeric artificial cilia, and integrate these in microfluidic devices. Magnetic actuation and optical readout systems complete the platform. We will apply the novel platform to address three fundamental and unresolved biomechanical questions: 1. How do hydrodynamic interactions with actuated cilia steer cellular and particle transport? 2. How do local and dynamic mechanical forces on cells fundamentally influence their motility and differentiation? 3. How do hydrodynamic interactions between cilia steer embryonic development? This unique platform will enable to address many other future biomechanical questions.
Max ERC Funding
3 083 625 €
Duration
Start date: 2019-10-01, End date: 2024-09-30