Project acronym 0MSPIN
Project Spintronics based on relativistic phenomena in systems with zero magnetic moment
Researcher (PI) Tomas Jungwirth
Host Institution (HI) FYZIKALNI USTAV AV CR V.V.I
Country Czechia
Call Details Advanced Grant (AdG), PE3, ERC-2010-AdG_20100224
Summary The 0MSPIN project consists of an extensive integrated theoretical, experimental and device development programme of research opening a radical new approach to spintronics. Spintronics has the potential to supersede existing storage and memory applications, and to provide alternatives to current CMOS technology. Ferromagnetic matels used in all current spintronics applications may make it impractical to realise the full potential of spintronics. Metals are unsuitable for transistor and information processing applications, for opto-electronics, or for high-density integration. The 0MSPIN project aims to remove the major road-block holding back the development of spintronics in a radical way: removing the ferromagnetic component from key active parts or from the whole of the spintronic devices. This approach is based on exploiting the combination of exchange and spin-orbit coupling phenomena and material systems with zero macroscopic moment. The goal of the 0MSPIN is to provide a new paradigm by which spintronics can enter the realms of conventional semiconductors in both fundamental condensed matter research and in information technologies. In the central part of the proposal, the research towards this goal is embedded within a materials science project whose aim is to introduce into physics and microelectronics an entirely new class of semiconductors. 0MSPIN seeks to exploit three classes of material systems: (1) Antiferromagnetic bi-metallic 3d-5d alloys (e.g. Mn2Au). (2) Antiferromagnetic I-II-V semiconductors (e.g. LiMnAs). (3) Non-magnetic spin-orbit coupled semiconductors with injected spin-polarized currents (e.g. 2D III-V structures). Proof of concept devices operating at high temperatures will be fabricated to show-case new functionalities offered by zero-moment systems for sensing and memory applications, information processing, and opto-electronics technologies.
Summary
The 0MSPIN project consists of an extensive integrated theoretical, experimental and device development programme of research opening a radical new approach to spintronics. Spintronics has the potential to supersede existing storage and memory applications, and to provide alternatives to current CMOS technology. Ferromagnetic matels used in all current spintronics applications may make it impractical to realise the full potential of spintronics. Metals are unsuitable for transistor and information processing applications, for opto-electronics, or for high-density integration. The 0MSPIN project aims to remove the major road-block holding back the development of spintronics in a radical way: removing the ferromagnetic component from key active parts or from the whole of the spintronic devices. This approach is based on exploiting the combination of exchange and spin-orbit coupling phenomena and material systems with zero macroscopic moment. The goal of the 0MSPIN is to provide a new paradigm by which spintronics can enter the realms of conventional semiconductors in both fundamental condensed matter research and in information technologies. In the central part of the proposal, the research towards this goal is embedded within a materials science project whose aim is to introduce into physics and microelectronics an entirely new class of semiconductors. 0MSPIN seeks to exploit three classes of material systems: (1) Antiferromagnetic bi-metallic 3d-5d alloys (e.g. Mn2Au). (2) Antiferromagnetic I-II-V semiconductors (e.g. LiMnAs). (3) Non-magnetic spin-orbit coupled semiconductors with injected spin-polarized currents (e.g. 2D III-V structures). Proof of concept devices operating at high temperatures will be fabricated to show-case new functionalities offered by zero-moment systems for sensing and memory applications, information processing, and opto-electronics technologies.
Max ERC Funding
1 938 000 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym 4D-EEG
Project 4D-EEG: A new tool to investigate the spatial and temporal activity patterns in the brain
Researcher (PI) Franciscus C.T. Van Der Helm
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Country Netherlands
Call Details Advanced Grant (AdG), PE7, ERC-2011-ADG_20110209
Summary Our first goal is to develop a new tool to determine brain activity with a high temporal (< 1 msec) and spatial (about 2 mm) resolution with the focus on motor control. High density EEG (up to 256 electrodes) will be used for EEG source localization. Advanced force-controlled robot manipulators will be used to impose continuous force perturbations to the joints. Advanced closed-loop system identification algorithms will identify the dynamic EEG response of multiple brain areas to the perturbation, leading to a functional interpretation of EEG. The propagation of the signal in time and 3D space through the cortex can be monitored: 4D-EEG. Preliminary experiments with EEG localization have shown that the continuous force perturbations resulted in a better signal-to-noise ratio and coherence than the current method using transient perturbations..
4D-EEG will be a direct measure of the neural activity in the brain with an excellent temporal response and easy to use in combination with motor control tasks. The new 4D-EEG method is expected to provide a breakthrough in comparison to functional MRI (fMRI) when elucidating the meaning of cortical map plasticity in motor learning.
Our second goal is to generate and validate new hypotheses about the longitudinal relationship between motor learning and cortical map plasticity by clinically using 4D-EEG in an intensive, repeated measurement design in patients suffering from a stroke. The application of 4D-EEG combined with haptic robots will allow us to discover how dynamics in cortical map plasticity are related with upper limb recovery after stroke in terms of neural repair and using behavioral compensation strategies while performing a meaningful motor tasks.. The non-invasive 4D-EEG technique combined with haptic robots will open the window about what and how patients (re)learn when showing motor recovery after stroke in order to allow us to develop more effective patient-tailored therapies in neuro-rehabilitation.
Summary
Our first goal is to develop a new tool to determine brain activity with a high temporal (< 1 msec) and spatial (about 2 mm) resolution with the focus on motor control. High density EEG (up to 256 electrodes) will be used for EEG source localization. Advanced force-controlled robot manipulators will be used to impose continuous force perturbations to the joints. Advanced closed-loop system identification algorithms will identify the dynamic EEG response of multiple brain areas to the perturbation, leading to a functional interpretation of EEG. The propagation of the signal in time and 3D space through the cortex can be monitored: 4D-EEG. Preliminary experiments with EEG localization have shown that the continuous force perturbations resulted in a better signal-to-noise ratio and coherence than the current method using transient perturbations..
4D-EEG will be a direct measure of the neural activity in the brain with an excellent temporal response and easy to use in combination with motor control tasks. The new 4D-EEG method is expected to provide a breakthrough in comparison to functional MRI (fMRI) when elucidating the meaning of cortical map plasticity in motor learning.
Our second goal is to generate and validate new hypotheses about the longitudinal relationship between motor learning and cortical map plasticity by clinically using 4D-EEG in an intensive, repeated measurement design in patients suffering from a stroke. The application of 4D-EEG combined with haptic robots will allow us to discover how dynamics in cortical map plasticity are related with upper limb recovery after stroke in terms of neural repair and using behavioral compensation strategies while performing a meaningful motor tasks.. The non-invasive 4D-EEG technique combined with haptic robots will open the window about what and how patients (re)learn when showing motor recovery after stroke in order to allow us to develop more effective patient-tailored therapies in neuro-rehabilitation.
Max ERC Funding
3 477 202 €
Duration
Start date: 2012-06-01, End date: 2017-05-31
Project acronym AARTFAAC
Project Amsterdam-ASTRON Radio Transient Facility And Analysis Centre: Probing the Extremes of Astrophysics
Researcher (PI) Ralph Antoine Marie Joseph Wijers
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Country Netherlands
Call Details Advanced Grant (AdG), PE9, ERC-2009-AdG
Summary Some of the most extreme tests of physical law come from its manifestations in the behaviour of black holes and neutron stars, and as such these objects should be used as fundamental physics labs. Due to advances in both theoretical work and observational techniques, I have a major opportunity now to significantly push this agenda forward and get better answers to questions like: How are black holes born? How can energy be extracted from black holes? What is the origin of magnetic fields and cosmic rays in jets and shocks? Is their primary energy stream hadronic or magnetic? I propose to do this by exploiting the advent of wide-field radio astronomy: extreme objects are very rare and usually transient, so not only must one survey large areas of sky, but also must one do this often. I propose to form and shape a group that will use the LOFAR wide-field radio telescope to hunt for these extreme transients and systematically collect enough well-documented examples of the behaviour of each type of transient. Furthermore, I propose to expand LOFAR with a true 24/7 all-sky monitor to catch and study even the rarest of events. Next, I will use my experience in gamma-ray burst followup to conduct a vigorous multi-wavelength programme of study of these objects, to constrain their physics from as many angles as possible. This will eventually include results from multi-messenger astrophysics, in which we use neutrinos, gravity waves, and other non-electromagnetic messengers as extra diagnostics of the physics of these sources. Finally, I will build on my experience in modelling accretion phenomena and relativistic explosions to develop a theoretical framework for these phenomena and constrain the resulting models with the rich data sets we obtain.
Summary
Some of the most extreme tests of physical law come from its manifestations in the behaviour of black holes and neutron stars, and as such these objects should be used as fundamental physics labs. Due to advances in both theoretical work and observational techniques, I have a major opportunity now to significantly push this agenda forward and get better answers to questions like: How are black holes born? How can energy be extracted from black holes? What is the origin of magnetic fields and cosmic rays in jets and shocks? Is their primary energy stream hadronic or magnetic? I propose to do this by exploiting the advent of wide-field radio astronomy: extreme objects are very rare and usually transient, so not only must one survey large areas of sky, but also must one do this often. I propose to form and shape a group that will use the LOFAR wide-field radio telescope to hunt for these extreme transients and systematically collect enough well-documented examples of the behaviour of each type of transient. Furthermore, I propose to expand LOFAR with a true 24/7 all-sky monitor to catch and study even the rarest of events. Next, I will use my experience in gamma-ray burst followup to conduct a vigorous multi-wavelength programme of study of these objects, to constrain their physics from as many angles as possible. This will eventually include results from multi-messenger astrophysics, in which we use neutrinos, gravity waves, and other non-electromagnetic messengers as extra diagnostics of the physics of these sources. Finally, I will build on my experience in modelling accretion phenomena and relativistic explosions to develop a theoretical framework for these phenomena and constrain the resulting models with the rich data sets we obtain.
Max ERC Funding
3 499 128 €
Duration
Start date: 2010-10-01, End date: 2016-09-30
Project acronym ALPROS
Project Artificial Life-like Processive Systems
Researcher (PI) Roeland Johannes Maria Nolte
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Country Netherlands
Call Details Advanced Grant (AdG), PE5, ERC-2011-ADG_20110209
Summary Toroidal processive enzymes (e.g. enzymes/proteins that are able to thread onto biopolymers and to perform stepwise reactions along the polymer chain) are among the most fascinating tools involved in the clockwork machinery of life. Processive catalysis is ubiquitous in Nature, viz. DNA polymerases, endo- and exo-nucleases and; it plays a crucial role in numerous events of the cell’s life, including most of the replication, transmission, and expression and repair processes of the genetic information. In the case of DNA polymerases the protein catalyst encircles the DNA and whilst moving along it, make copies of high fidelity. Although numerous works have been reported in relation with the synthesis of natural enzymes' analogues, very few efforts have been paid in comparison to mimic these processive properties. It is the goal of this proposal to rectify this oversight and unravel the essential components of Nature’s polymer catalysts. The individual projects are designed to specifically target the essential aspects of processive catalysis, i.e. rate of motion, rate of catalysis, and transfer of information. One project is aimed at extending the research into a processive catalytic system that is more suitable for industrial application. Two projects involve more farsighted studies and are designed to push the research way beyond the current boundaries into the area of Turing machines and bio-rotaxane catalysts which can modify DNA in a non-natural process. The vision of this proposal is to open up the field of ‘processive catalysis’ and invigorate the next generation of chemists to develop information transfer and toroidal processive catalysts. The construction of synthetic analogues of processive enzymes could open a gate toward a large range of applications, ranging from intelligent tailoring of polymers to information storage and processing.
Summary
Toroidal processive enzymes (e.g. enzymes/proteins that are able to thread onto biopolymers and to perform stepwise reactions along the polymer chain) are among the most fascinating tools involved in the clockwork machinery of life. Processive catalysis is ubiquitous in Nature, viz. DNA polymerases, endo- and exo-nucleases and; it plays a crucial role in numerous events of the cell’s life, including most of the replication, transmission, and expression and repair processes of the genetic information. In the case of DNA polymerases the protein catalyst encircles the DNA and whilst moving along it, make copies of high fidelity. Although numerous works have been reported in relation with the synthesis of natural enzymes' analogues, very few efforts have been paid in comparison to mimic these processive properties. It is the goal of this proposal to rectify this oversight and unravel the essential components of Nature’s polymer catalysts. The individual projects are designed to specifically target the essential aspects of processive catalysis, i.e. rate of motion, rate of catalysis, and transfer of information. One project is aimed at extending the research into a processive catalytic system that is more suitable for industrial application. Two projects involve more farsighted studies and are designed to push the research way beyond the current boundaries into the area of Turing machines and bio-rotaxane catalysts which can modify DNA in a non-natural process. The vision of this proposal is to open up the field of ‘processive catalysis’ and invigorate the next generation of chemists to develop information transfer and toroidal processive catalysts. The construction of synthetic analogues of processive enzymes could open a gate toward a large range of applications, ranging from intelligent tailoring of polymers to information storage and processing.
Max ERC Funding
1 603 699 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym ARTISYM
Project Artificial endosymbiosis
Researcher (PI) Jan Van hest
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Country Netherlands
Call Details Advanced Grant (AdG), PE5, ERC-2015-AdG
Summary Living organisms have acquired new functionalities by uptake and integration of species to create symbiotic life-forms. This process of endosymbiosis has intrigued scientists over the years, albeit mostly from an evolution biology perspective. With the advance of chemical and synthetic biology, our ability to create molecular-life-like systems has increased tremendously, which enables us to build cell and organelle-like structures. However, these advances have not been taken to a level to study comprehensively if endosymbiosis can be applied to non-living systems or to integrate living with non-living matter. The aim of the research described in the ARTISYM proposal is to establish the field of artificial endosymbiosis. Two lines of research will be followed. First, we will incorporate artificial organelles in living cells to design hybrid cells with acquired functionality. This investigation is scientifically of great interest, as it will show us how to introduce novel compartmentalized pathways into living organisms. It also serves an important societal goal, as with these compartments dysfunctional cellular processes can be corrected. We will follow both a transient and a permanent approach. With the transient route biodegradable nanoreactors are introduced to supply living cells temporarily with novel function. Functionality is permanently introduced using genetic engineering to express protein-based nanoreactors in living cells, or via organelle transplantation of healthy mitochondria in diseased living cells. Secondly I aim to create artificial cells with the ability to perform endosymbiosis; the uptake and presence of artificial organelles in synthetic vesicles allows them to dynamically respond to their environment. Responses that are envisaged are shape changes, motility, and growth and division. Furthermore, the incorporation of natural organelles in liposomes provides biocatalytic cascades with the necessary cofactors to function in an artificial cell
Summary
Living organisms have acquired new functionalities by uptake and integration of species to create symbiotic life-forms. This process of endosymbiosis has intrigued scientists over the years, albeit mostly from an evolution biology perspective. With the advance of chemical and synthetic biology, our ability to create molecular-life-like systems has increased tremendously, which enables us to build cell and organelle-like structures. However, these advances have not been taken to a level to study comprehensively if endosymbiosis can be applied to non-living systems or to integrate living with non-living matter. The aim of the research described in the ARTISYM proposal is to establish the field of artificial endosymbiosis. Two lines of research will be followed. First, we will incorporate artificial organelles in living cells to design hybrid cells with acquired functionality. This investigation is scientifically of great interest, as it will show us how to introduce novel compartmentalized pathways into living organisms. It also serves an important societal goal, as with these compartments dysfunctional cellular processes can be corrected. We will follow both a transient and a permanent approach. With the transient route biodegradable nanoreactors are introduced to supply living cells temporarily with novel function. Functionality is permanently introduced using genetic engineering to express protein-based nanoreactors in living cells, or via organelle transplantation of healthy mitochondria in diseased living cells. Secondly I aim to create artificial cells with the ability to perform endosymbiosis; the uptake and presence of artificial organelles in synthetic vesicles allows them to dynamically respond to their environment. Responses that are envisaged are shape changes, motility, and growth and division. Furthermore, the incorporation of natural organelles in liposomes provides biocatalytic cascades with the necessary cofactors to function in an artificial cell
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym Auger-Horizon
Project A large-scale radio detector for the Pierre Auger cosmic-ray Observatory – precision measurements of ultra-high-energy cosmic rays
Researcher (PI) Joerg HoeRANDEL
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Country Netherlands
Call Details Advanced Grant (AdG), PE9, ERC-2017-ADG
Summary Cosmic Rays (ionized atomic nuclei) are the only matter from beyond our solar system or even from extragalactic space, that we can directly investigate. Up to energies of 10^17 eV they most likely originate in our Galaxy. The highest-energy cosmic rays (>10^18 eV) cannot be magnetically bound any more to the Galaxy and are most likely of extragalactic origin.
The pure existence of these particles raises the question about their origin – how and where are they accelerated? How do they propagate through the universe and interact? How can we directly probe extragalactic matter and how can we locate its origin?
A key to understand the origin of cosmic rays is to measure the particle species (atomic mass). A precise mass measurement will allow discriminating astrophysical models and will clarify the reason for the observed suppression of the cosmic-ray flux at the highest energies, namely the maximum energy of the accelerators or the energy losses during propagation.
I address these questions by employing a new technique to precisely measure the cosmic-ray mass composition, which my group pioneered, the radio detection of air showers (induced by high-energy cosmic rays in the atmosphere) on very large scales, detecting horizontal air showers with zenith angles from 60° to 90°.
The new set-up will be the world-largest radio array, operated together with the well-established Auger surface and fluorescence detectors, forming a unique set-up to measure the properties of cosmic rays with unprecedented precision for energies above 10^17.5 eV. The radio technique is a cost-effective and robust method to measure the cosmic-ray energy and mass, complementary to established techniques. The energy scale of the radio measurements is established from first principles. The proposed detectors will also enhance the detection capabilities for high-energy neutrinos and the search for new physics through precision measurements of the electromagnetic and muonic shower components.
Summary
Cosmic Rays (ionized atomic nuclei) are the only matter from beyond our solar system or even from extragalactic space, that we can directly investigate. Up to energies of 10^17 eV they most likely originate in our Galaxy. The highest-energy cosmic rays (>10^18 eV) cannot be magnetically bound any more to the Galaxy and are most likely of extragalactic origin.
The pure existence of these particles raises the question about their origin – how and where are they accelerated? How do they propagate through the universe and interact? How can we directly probe extragalactic matter and how can we locate its origin?
A key to understand the origin of cosmic rays is to measure the particle species (atomic mass). A precise mass measurement will allow discriminating astrophysical models and will clarify the reason for the observed suppression of the cosmic-ray flux at the highest energies, namely the maximum energy of the accelerators or the energy losses during propagation.
I address these questions by employing a new technique to precisely measure the cosmic-ray mass composition, which my group pioneered, the radio detection of air showers (induced by high-energy cosmic rays in the atmosphere) on very large scales, detecting horizontal air showers with zenith angles from 60° to 90°.
The new set-up will be the world-largest radio array, operated together with the well-established Auger surface and fluorescence detectors, forming a unique set-up to measure the properties of cosmic rays with unprecedented precision for energies above 10^17.5 eV. The radio technique is a cost-effective and robust method to measure the cosmic-ray energy and mass, complementary to established techniques. The energy scale of the radio measurements is established from first principles. The proposed detectors will also enhance the detection capabilities for high-energy neutrinos and the search for new physics through precision measurements of the electromagnetic and muonic shower components.
Max ERC Funding
3 499 249 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym BIOMATE
Project Soft Biomade Materials: Modular Protein Polymers and their nano-assemblies
Researcher (PI) Martinus Abraham Cohen Stuart
Host Institution (HI) WAGENINGEN UNIVERSITY
Country Netherlands
Call Details Advanced Grant (AdG), PE5, ERC-2010-AdG_20100224
Summary From a polymer chemistry perspective, the way in which nature produces its plethora of different proteins is a miracle of precision: the synthesis of each single molecule is directed by the sequence information chemically coded in DNA. The present state of recombinant DNA technology should in principle allow us to make genes that code for entirely new, very sophisticated amino acid polymers, which are chosen and designed by man to serve as new polymer materials. It has been shown that it is indeed possible to make use of the protein biosynthetic machinery and produce such de novo protein polymers, but it is not clear what their potentials are in terms of new materials with desired functionalities.
I propose to develop a new class of protein polymers, chosen such that they form nanostructured materials by triggered folding and multimolecular assembly. The plan is based on three innovative ideas: (i) each new protein polymer will be constructed from a limited set of selected amino acid sequences, called modules (hence the term modular protein polymers) (ii) new, high-yield fermentation strategies will be developed so that polymers will become available in significant quantities for evaluation and application; (iii) the design of modular protein polymers is carried out as a cyclic process in which sequence selection, construction of artificial genes, optimisation of fermentation for high yield, studying polymer folding and assembly, and modelling of the nanostructure by molecular simulation are all logically connected, allowing efficient selection of target sequences.
This project is a cross-road. It brings together biotechnology and polymer science, creating a unique set of biomaterials for medical and pharmaceutical use, that can be easily extended into a manifold of biofunctional materials. Moreover, it will provide us with fresh tools and valuable insights to tackle the subtle relations between protein sequence and folding.
Summary
From a polymer chemistry perspective, the way in which nature produces its plethora of different proteins is a miracle of precision: the synthesis of each single molecule is directed by the sequence information chemically coded in DNA. The present state of recombinant DNA technology should in principle allow us to make genes that code for entirely new, very sophisticated amino acid polymers, which are chosen and designed by man to serve as new polymer materials. It has been shown that it is indeed possible to make use of the protein biosynthetic machinery and produce such de novo protein polymers, but it is not clear what their potentials are in terms of new materials with desired functionalities.
I propose to develop a new class of protein polymers, chosen such that they form nanostructured materials by triggered folding and multimolecular assembly. The plan is based on three innovative ideas: (i) each new protein polymer will be constructed from a limited set of selected amino acid sequences, called modules (hence the term modular protein polymers) (ii) new, high-yield fermentation strategies will be developed so that polymers will become available in significant quantities for evaluation and application; (iii) the design of modular protein polymers is carried out as a cyclic process in which sequence selection, construction of artificial genes, optimisation of fermentation for high yield, studying polymer folding and assembly, and modelling of the nanostructure by molecular simulation are all logically connected, allowing efficient selection of target sequences.
This project is a cross-road. It brings together biotechnology and polymer science, creating a unique set of biomaterials for medical and pharmaceutical use, that can be easily extended into a manifold of biofunctional materials. Moreover, it will provide us with fresh tools and valuable insights to tackle the subtle relations between protein sequence and folding.
Max ERC Funding
2 497 044 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym CHEMPLAN
Project Astrochemistry and the Origin of Planetary Systems
Researcher (PI) Ewine Fleur Van Dishoeck
Host Institution (HI) UNIVERSITEIT LEIDEN
Country Netherlands
Call Details Advanced Grant (AdG), PE9, ERC-2011-ADG_20110209
Summary When interstellar clouds collapse to form new stars and planets, the surrounding gas and dust become part of the infalling envelopes and rotating disks, thus providing the basic material from which new solar systems are made. Instrumentation to probe the physics and chemistry in low-mass star-forming regions has so far lacked spatial resolution. I propose here an integrated observational-modeling-laboratory program to survey protostars and disks on the relevant scales of 1-50 AU where planet formation takes place. The observations are centered on new data coming from the Atacama Large Millimeter / submillimeter Array (ALMA), and the analysis includes unique new data from key programs on Herschel, Spitzer and VLT that I am (co-)leading. The combination of millimeter and infrared data allows the full range of temperatures from 10-2000 K in star- and planet- forming regions to be probed, for both gas and solids. The molecular line data are used as diagnostics of physical parameters (such as UV field, cosmic ray ionization rate, kinematics, mixing, shock strength, grain growth, gas/dust ratios) as well as to follow the chemistry of water and complex organic molecules from cores to disks, which ultimately may be delivered to terrestrial planets. The implications for the history of volatile material in our own solar systen and exo-planetary atmospheres will be assessed by comparing models and data with cometary taxonomy and, ultimately, feeding them into planet population synthesis models. Altogether, this program will bring the link between interstellar chemistry and solar system and exo-planetary research to a new level.
The project will train four PhD students in a truly interdisciplinary environment in which they are exposed to all aspects of molecular astrophysics and have access to ample ALMA expertise, and it will prepare two postdocs for future faculty positions.
Summary
When interstellar clouds collapse to form new stars and planets, the surrounding gas and dust become part of the infalling envelopes and rotating disks, thus providing the basic material from which new solar systems are made. Instrumentation to probe the physics and chemistry in low-mass star-forming regions has so far lacked spatial resolution. I propose here an integrated observational-modeling-laboratory program to survey protostars and disks on the relevant scales of 1-50 AU where planet formation takes place. The observations are centered on new data coming from the Atacama Large Millimeter / submillimeter Array (ALMA), and the analysis includes unique new data from key programs on Herschel, Spitzer and VLT that I am (co-)leading. The combination of millimeter and infrared data allows the full range of temperatures from 10-2000 K in star- and planet- forming regions to be probed, for both gas and solids. The molecular line data are used as diagnostics of physical parameters (such as UV field, cosmic ray ionization rate, kinematics, mixing, shock strength, grain growth, gas/dust ratios) as well as to follow the chemistry of water and complex organic molecules from cores to disks, which ultimately may be delivered to terrestrial planets. The implications for the history of volatile material in our own solar systen and exo-planetary atmospheres will be assessed by comparing models and data with cometary taxonomy and, ultimately, feeding them into planet population synthesis models. Altogether, this program will bring the link between interstellar chemistry and solar system and exo-planetary research to a new level.
The project will train four PhD students in a truly interdisciplinary environment in which they are exposed to all aspects of molecular astrophysics and have access to ample ALMA expertise, and it will prepare two postdocs for future faculty positions.
Max ERC Funding
2 499 150 €
Duration
Start date: 2012-07-01, End date: 2018-06-30
Project acronym CODEX
Project The Final 21-cm Cosmology Frontier
Researcher (PI) LUITJE VINCENT EWOUD KOOPMANS
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Country Netherlands
Call Details Advanced Grant (AdG), PE9, ERC-2019-ADG
Summary "Radiation emitted by neutral hydrogen during the Universe's first billion years holds detailed information about its first stars, galaxies, black holes and fundamental physics. Achieving a detection of its faint ""21-cm signal"", currently redshifted to several meter wavelengths, has been extremely difficult due to the bright radio emission from other sources, human-made interference signals, the ionosphere, and telescope imperfections. It thus remains one of the hardest frontiers in present-day cosmology.
In the past years, we made tremendous progress in mitigating these challenges, thanks to access to world-class low-frequency radio telescopes and research into innovative data analysis techniques. Using the Low-Frequency Array (LOFAR), we set the deepest limits on the 21-cm signal during the Epoch of Reionization, 500-1000 million years after the Big Bang, and the first limits during the early Cosmic Dawn. We started two innovative programs with AARTFAAC and NenuFAR, targeting the entire span of the Cosmic Dawn (100-500 million years), covering the recently-announced global 21-cm signal from EDGES. Last but not least, we launched the Netherlands-China Low-Frequency Explorer (NCLE) space-mission, currently in lunar L2 as part of the Chinese Chang-e' 4 mission, to set the first limits on the global 21-cm signal from the Dark Ages (20-100 million years).
CoDEX draws together these state-of-the-art observational programs and their expertise into a single program, improving current 21-cm power spectrum limits by three to six orders of magnitude, advancing them into the domain of standard astrophysical models from z~8 to ~80. To achieve this, we will process petabytes of data, strengthen efforts in the signal- and data-processing domain and enhance processing capacity. ERC funding enables us to achieve this in the coming years before next-generation instruments, such as the SKA, come online."
Summary
"Radiation emitted by neutral hydrogen during the Universe's first billion years holds detailed information about its first stars, galaxies, black holes and fundamental physics. Achieving a detection of its faint ""21-cm signal"", currently redshifted to several meter wavelengths, has been extremely difficult due to the bright radio emission from other sources, human-made interference signals, the ionosphere, and telescope imperfections. It thus remains one of the hardest frontiers in present-day cosmology.
In the past years, we made tremendous progress in mitigating these challenges, thanks to access to world-class low-frequency radio telescopes and research into innovative data analysis techniques. Using the Low-Frequency Array (LOFAR), we set the deepest limits on the 21-cm signal during the Epoch of Reionization, 500-1000 million years after the Big Bang, and the first limits during the early Cosmic Dawn. We started two innovative programs with AARTFAAC and NenuFAR, targeting the entire span of the Cosmic Dawn (100-500 million years), covering the recently-announced global 21-cm signal from EDGES. Last but not least, we launched the Netherlands-China Low-Frequency Explorer (NCLE) space-mission, currently in lunar L2 as part of the Chinese Chang-e' 4 mission, to set the first limits on the global 21-cm signal from the Dark Ages (20-100 million years).
CoDEX draws together these state-of-the-art observational programs and their expertise into a single program, improving current 21-cm power spectrum limits by three to six orders of magnitude, advancing them into the domain of standard astrophysical models from z~8 to ~80. To achieve this, we will process petabytes of data, strengthen efforts in the signal- and data-processing domain and enhance processing capacity. ERC funding enables us to achieve this in the coming years before next-generation instruments, such as the SKA, come online."
Max ERC Funding
3 499 965 €
Duration
Start date: 2020-12-01, End date: 2025-11-30
Project acronym COLMIN
Project A Google Earth Approach to Understanding Collagen Mineralization
Researcher (PI) Nico SOMMERDIJK
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Country Netherlands
Call Details Advanced Grant (AdG), PE4, ERC-2017-ADG
Summary Collagen mineralization in bone is one of the most crucial processes in our body as it supplies the skeleton on which we depend for support and protection. Bone’s impressive mechanical properties arise from the hierarchical organization of the organic collagen matrix that is mineralized with ultrathin, aligned inorganic crystals of carbonated hydroxyapatite.
Despite its importance to the human body, relatively little is understood about collagen mineralization and how the proteins govern mineral growth with such precision. This is because the matrix development is a complex process with different stages that occur over multiple length scales and depends on many different components.
I propose to obtain the first comprehensive picture of the collagen mineralization mechanism by unraveling its dynamics and structural details. It is not only of great fundamental importance, it also opens the way to the development of better biomaterials, as well as to strategies for the treatment of mineralization-related diseases.
I will achieve this ambitious goal by designing a dedicated tissue engineering platform that models real bone as closely as possible, and will allow application of multiple advanced analysis techniques. These I will employ in a “Google Earth” approach, studying the process from the micrometer to the nanometer scale, combining live cell imaging and “beyond state-of-the-art” electron microscopy with chemical and biochemical analysis to reveal the details of collagen mineralization with the highest spatial, temporal and molecular resolution thus far. Exploiting my extensive expertise in the field of biomineralization and advanced electron microscopy, COLMIN will provide a major step in understanding collagen formation and mineralization, and provide insights that will help to fight bone-related diseases. The advanced multidisciplinary methodology developed here will set a new standard for the advanced analysis of bone formation and other biological processes.
Summary
Collagen mineralization in bone is one of the most crucial processes in our body as it supplies the skeleton on which we depend for support and protection. Bone’s impressive mechanical properties arise from the hierarchical organization of the organic collagen matrix that is mineralized with ultrathin, aligned inorganic crystals of carbonated hydroxyapatite.
Despite its importance to the human body, relatively little is understood about collagen mineralization and how the proteins govern mineral growth with such precision. This is because the matrix development is a complex process with different stages that occur over multiple length scales and depends on many different components.
I propose to obtain the first comprehensive picture of the collagen mineralization mechanism by unraveling its dynamics and structural details. It is not only of great fundamental importance, it also opens the way to the development of better biomaterials, as well as to strategies for the treatment of mineralization-related diseases.
I will achieve this ambitious goal by designing a dedicated tissue engineering platform that models real bone as closely as possible, and will allow application of multiple advanced analysis techniques. These I will employ in a “Google Earth” approach, studying the process from the micrometer to the nanometer scale, combining live cell imaging and “beyond state-of-the-art” electron microscopy with chemical and biochemical analysis to reveal the details of collagen mineralization with the highest spatial, temporal and molecular resolution thus far. Exploiting my extensive expertise in the field of biomineralization and advanced electron microscopy, COLMIN will provide a major step in understanding collagen formation and mineralization, and provide insights that will help to fight bone-related diseases. The advanced multidisciplinary methodology developed here will set a new standard for the advanced analysis of bone formation and other biological processes.
Max ERC Funding
3 498 006 €
Duration
Start date: 2019-01-01, End date: 2024-06-30