Project acronym 1st-principles-discs
Project A First Principles Approach to Accretion Discs
Researcher (PI) Martin Elias Pessah
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Summary
Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Max ERC Funding
1 793 697 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym 2DMATER
Project Controlled Synthesis of Two-Dimensional Nanomaterials for Energy Storage and Conversion
Researcher (PI) Xinliang Feng
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Country Germany
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary "Two-dimensional (2D) nanosheets, which possess a high degree of anisotropy with nanoscale thickness and infinite length in other dimensions, hold enormous promise as a novel class of ultrathin 2D nanomaterials with various unique functionalities and properties, and exhibit great potential in energy storage and conversion systems that are substantially different from their respective 3D bulk forms. Here I propose a strategy for the synthesis and processing of various 2D nanosheets across a broad range of inorganic, organic and polymeric materials with molecular-level or thin thickness through both the top-down exfoliation of layered materials and the bottom-up assembly of available molecular building blocks. Further, I aim to develop the synthesis of various 2D-nanosheet based composite materials with thickness of less than 100 nm and the assembly of 2D nanosheets into novel hierarchal superstrucutures (like aerogels, spheres, porous particles, nanotubes, multi-layer films). The structural features of these 2D nanomaterials will be controllably tailored by both the used layered precursors and processing methodologies. The consequence is that I will apply and combine defined functional components as well as assembly protocols to create novel 2D nanomaterials for specific purposes in energy storage and conversion systems. Their unique characters will include the good electrical conductivity, excellent mechanical flexibility, high surface area, high chemical stability, fast electron transport and ion diffusion etc. Applications will be mainly demonstrated for the construction of lithium ion batteries (anode and cathode), supercapacitors (symmetric and asymmetric) and fuel cells. As the key achievements, I expect to establish the delineation of reliable structure-property relationships and improved device performance of 2D nanomaterials."
Summary
"Two-dimensional (2D) nanosheets, which possess a high degree of anisotropy with nanoscale thickness and infinite length in other dimensions, hold enormous promise as a novel class of ultrathin 2D nanomaterials with various unique functionalities and properties, and exhibit great potential in energy storage and conversion systems that are substantially different from their respective 3D bulk forms. Here I propose a strategy for the synthesis and processing of various 2D nanosheets across a broad range of inorganic, organic and polymeric materials with molecular-level or thin thickness through both the top-down exfoliation of layered materials and the bottom-up assembly of available molecular building blocks. Further, I aim to develop the synthesis of various 2D-nanosheet based composite materials with thickness of less than 100 nm and the assembly of 2D nanosheets into novel hierarchal superstrucutures (like aerogels, spheres, porous particles, nanotubes, multi-layer films). The structural features of these 2D nanomaterials will be controllably tailored by both the used layered precursors and processing methodologies. The consequence is that I will apply and combine defined functional components as well as assembly protocols to create novel 2D nanomaterials for specific purposes in energy storage and conversion systems. Their unique characters will include the good electrical conductivity, excellent mechanical flexibility, high surface area, high chemical stability, fast electron transport and ion diffusion etc. Applications will be mainly demonstrated for the construction of lithium ion batteries (anode and cathode), supercapacitors (symmetric and asymmetric) and fuel cells. As the key achievements, I expect to establish the delineation of reliable structure-property relationships and improved device performance of 2D nanomaterials."
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym 3D-QUEST
Project 3D-Quantum Integrated Optical Simulation
Researcher (PI) Fabio Sciarrino
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Country Italy
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary "Quantum information was born from the merging of classical information and quantum physics. Its main objective consists of understanding the quantum nature of information and learning how to process it by using physical systems which operate by following quantum mechanics laws. Quantum simulation is a fundamental instrument to investigate phenomena of quantum systems dynamics, such as quantum transport, particle localizations and energy transfer, quantum-to-classical transition, and even quantum improved computation, all tasks that are hard to simulate with classical approaches. Within this framework integrated photonic circuits have a strong potential to realize quantum information processing by optical systems.
The aim of 3D-QUEST is to develop and implement quantum simulation by exploiting 3-dimensional integrated photonic circuits. 3D-QUEST is structured to demonstrate the potential of linear optics to implement a computational power beyond the one of a classical computer. Such ""hard-to-simulate"" scenario is disclosed when multiphoton-multimode platforms are realized. The 3D-QUEST research program will focus on three tasks of growing difficulty.
A-1. To simulate bosonic-fermionic dynamics with integrated optical systems acting on 2 photon entangled states.
A-2. To pave the way towards hard-to-simulate, scalable quantum linear optical circuits by investigating m-port interferometers acting on n-photon states with n>2.
A-3. To exploit 3-dimensional integrated structures for the observation of new quantum optical phenomena and for the quantum simulation of more complex scenarios.
3D-QUEST will exploit the potential of the femtosecond laser writing integrated waveguides. This technique will be adopted to realize 3-dimensional capabilities and high flexibility, bringing in this way the optical quantum simulation in to new regime."
Summary
"Quantum information was born from the merging of classical information and quantum physics. Its main objective consists of understanding the quantum nature of information and learning how to process it by using physical systems which operate by following quantum mechanics laws. Quantum simulation is a fundamental instrument to investigate phenomena of quantum systems dynamics, such as quantum transport, particle localizations and energy transfer, quantum-to-classical transition, and even quantum improved computation, all tasks that are hard to simulate with classical approaches. Within this framework integrated photonic circuits have a strong potential to realize quantum information processing by optical systems.
The aim of 3D-QUEST is to develop and implement quantum simulation by exploiting 3-dimensional integrated photonic circuits. 3D-QUEST is structured to demonstrate the potential of linear optics to implement a computational power beyond the one of a classical computer. Such ""hard-to-simulate"" scenario is disclosed when multiphoton-multimode platforms are realized. The 3D-QUEST research program will focus on three tasks of growing difficulty.
A-1. To simulate bosonic-fermionic dynamics with integrated optical systems acting on 2 photon entangled states.
A-2. To pave the way towards hard-to-simulate, scalable quantum linear optical circuits by investigating m-port interferometers acting on n-photon states with n>2.
A-3. To exploit 3-dimensional integrated structures for the observation of new quantum optical phenomena and for the quantum simulation of more complex scenarios.
3D-QUEST will exploit the potential of the femtosecond laser writing integrated waveguides. This technique will be adopted to realize 3-dimensional capabilities and high flexibility, bringing in this way the optical quantum simulation in to new regime."
Max ERC Funding
1 474 800 €
Duration
Start date: 2012-08-01, End date: 2017-07-31
Project acronym 4TH-NU-AVENUE
Project Search for a fourth neutrino with a PBq anti-neutrino source
Researcher (PI) Thierry Michel Rene Lasserre
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Country France
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV2. This hypothesis can be tested with a PBq (ten kilocurie scale) 144Ce antineutrino beta-source deployed at the center of a large low background liquid scintillator detector, such like Borexino, KamLAND, and SNO+. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unambiguously determine neutrino mass differences and mixing angles.
The proposed program aims to perform the necessary research and developments to produce and deploy an intense antineutrino source in a large liquid scintillator detector. Our program will address the definition of the production process of the neutrino source as well as its experimental characterization, the detailed physics simulation of both signal and backgrounds, the complete design and the realization of the thick shielding, the preparation of the interfaces with the antineutrino detector, including the safety and security aspects.
Summary
Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV2. This hypothesis can be tested with a PBq (ten kilocurie scale) 144Ce antineutrino beta-source deployed at the center of a large low background liquid scintillator detector, such like Borexino, KamLAND, and SNO+. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unambiguously determine neutrino mass differences and mixing angles.
The proposed program aims to perform the necessary research and developments to produce and deploy an intense antineutrino source in a large liquid scintillator detector. Our program will address the definition of the production process of the neutrino source as well as its experimental characterization, the detailed physics simulation of both signal and backgrounds, the complete design and the realization of the thick shielding, the preparation of the interfaces with the antineutrino detector, including the safety and security aspects.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym AF and MSOGR
Project Automorphic Forms and Moduli Spaces of Galois Representations
Researcher (PI) Toby Gee
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Country United Kingdom
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary I propose to establish a research group to develop completely new tools in order to solve three important problems on the relationships between automorphic forms and Galois representations, which lie at the heart of the Langlands program. The first is to prove Serre’s conjecture for real quadratic fields. I will use automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to proving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.
The second is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mézard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mézard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.
The third is to completely determine the reduction mod p of certain two-dimensional crystalline representations, and as an application prove a strengthened version of the Gouvêa–Mazur conjecture. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvêa-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.
Summary
I propose to establish a research group to develop completely new tools in order to solve three important problems on the relationships between automorphic forms and Galois representations, which lie at the heart of the Langlands program. The first is to prove Serre’s conjecture for real quadratic fields. I will use automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to proving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.
The second is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mézard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mézard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.
The third is to completely determine the reduction mod p of certain two-dimensional crystalline representations, and as an application prove a strengthened version of the Gouvêa–Mazur conjecture. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvêa-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.
Max ERC Funding
1 131 339 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym AgeingStemCellFate
Project The Role of Ectopic Adipocyte Progenitors in Age-related Stem Cell Dysfunction, Systemic Inflammation, and Metabolic Disease
Researcher (PI) Tim Julius Schulz
Host Institution (HI) DEUTSCHES INSTITUT FUER ERNAEHRUNGSFORSCHUNG POTSDAM REHBRUECKE
Country Germany
Call Details Starting Grant (StG), LS4, ERC-2012-StG_20111109
Summary Ageing is accompanied by ectopic white adipose tissue depositions in skeletal muscle and other anatomical locations, such as brown adipose tissue and the bone marrow. Ectopic fat accrual contributes to organ dysfunction, systemic insulin resistance, and other perturbations that have been implicated in metabolic diseases.
This research proposal aims to identify the regulatory cues that control the development of ectopic progenitor cells that give rise to this type of fat. It is hypothesized that an age-related dysfunction of the stem cell niche leads to an imbalance between (1) tissue-specific stem cells and (2) fibroblast-like, primarily adipogenic progenitors that reside within many tissues. Novel methodologies that assess stem/progenitor cell characteristics on the single cell level will be combined with animal models of lineage tracing to determine the developmental origin of these adipogenic progenitors and processes that regulate their function.
Notch signalling is a key signalling pathway that relies on direct physical interaction to control stem cell fate. It is proposed that impaired Notch activity contributes to the phenotypical shift of precursor cell distribution in aged tissues.
Lastly, the role of the stem cell niche in ectopic adipocyte progenitor formation will be analyzed. External signals originating from the surrounding niche cells regulate the developmental fate of stem cells. Secreted factors and their role in the formation of ectopic adipocyte precursors during senescence will be identified using a combination of biochemical and systems biology approaches.
Accomplishment of these studies will help to understand the basic processes of stem cell ageing and identify mechanisms of age-related functional decline in tissue regeneration. By targeting the population of tissue-resident adipogenic progenitor cells, therapeutic strategies could be developed to counteract metabolic complications associated with the ageing process.
Summary
Ageing is accompanied by ectopic white adipose tissue depositions in skeletal muscle and other anatomical locations, such as brown adipose tissue and the bone marrow. Ectopic fat accrual contributes to organ dysfunction, systemic insulin resistance, and other perturbations that have been implicated in metabolic diseases.
This research proposal aims to identify the regulatory cues that control the development of ectopic progenitor cells that give rise to this type of fat. It is hypothesized that an age-related dysfunction of the stem cell niche leads to an imbalance between (1) tissue-specific stem cells and (2) fibroblast-like, primarily adipogenic progenitors that reside within many tissues. Novel methodologies that assess stem/progenitor cell characteristics on the single cell level will be combined with animal models of lineage tracing to determine the developmental origin of these adipogenic progenitors and processes that regulate their function.
Notch signalling is a key signalling pathway that relies on direct physical interaction to control stem cell fate. It is proposed that impaired Notch activity contributes to the phenotypical shift of precursor cell distribution in aged tissues.
Lastly, the role of the stem cell niche in ectopic adipocyte progenitor formation will be analyzed. External signals originating from the surrounding niche cells regulate the developmental fate of stem cells. Secreted factors and their role in the formation of ectopic adipocyte precursors during senescence will be identified using a combination of biochemical and systems biology approaches.
Accomplishment of these studies will help to understand the basic processes of stem cell ageing and identify mechanisms of age-related functional decline in tissue regeneration. By targeting the population of tissue-resident adipogenic progenitor cells, therapeutic strategies could be developed to counteract metabolic complications associated with the ageing process.
Max ERC Funding
1 496 444 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym ANGIOMET
Project Angiogenesis-metabolism crosstalk in vascular homeostasis and disease
Researcher (PI) Michael Potente
Host Institution (HI) Klinik Max Planck Institut für Psychiatrie
Country Germany
Call Details Starting Grant (StG), LS4, ERC-2012-StG_20111109
Summary "Blood vessels pervade all tissues in the body to supply nutrients and oxygen. Aberrant vessel growth and function are hallmarks of cancer and cardiovascular diseases and they contribute to disease pathogenesis. Antiangiogenic therapeutics have reached the clinic, but limited efficacy and resistance raise unresolved challenges. The current limitations of angiogenic medicine call for a more integrated understanding of the angiogenic process that focuses not only on the instigators of vessel branching but also on mechanisms that sustain vessel growth. Recent insights into fundamental aspects of cell growth move metabolism into spotlight and establish how proliferating cells reprogram their metabolism to provide energy and building blocks for cell replication. During angiogenesis, endothelial cells (ECs) also convert between growth states: although mostly quiescent in adult tissues, ECs divide and migrate rapidly upon angiogenic stimulation. To allow growth of new vessel branches, ECs therefore need to adjust their metabolism to increase energy production and biosynthetic activity. However, the molecular mechanisms that coordinate EC metabolism with angiogenic signalling are not known to date. In this proposal, we put forth the hypothesis that metabolic regulation is a key component of the endothelial angiogenic machinery that is required to sustain vessel growth. Thus, this proposal aims (I) to define transcriptional circuits that link EC growth with metabolism, (II) to explore the regulation of these transcriptional networks by lysine acetylation, a nutrient-regulated protein modification with key functions in metabolism, and (III) to assess the role of sirtuin deacetylases for sensing endothelial energetics during vascular growth. Understanding the principles of angiogenesis-metabolism crosstalk will not only yield novel insights into the basic mechanisms of vessel formation but will also provide unprecedented opportunities for future drug development."
Summary
"Blood vessels pervade all tissues in the body to supply nutrients and oxygen. Aberrant vessel growth and function are hallmarks of cancer and cardiovascular diseases and they contribute to disease pathogenesis. Antiangiogenic therapeutics have reached the clinic, but limited efficacy and resistance raise unresolved challenges. The current limitations of angiogenic medicine call for a more integrated understanding of the angiogenic process that focuses not only on the instigators of vessel branching but also on mechanisms that sustain vessel growth. Recent insights into fundamental aspects of cell growth move metabolism into spotlight and establish how proliferating cells reprogram their metabolism to provide energy and building blocks for cell replication. During angiogenesis, endothelial cells (ECs) also convert between growth states: although mostly quiescent in adult tissues, ECs divide and migrate rapidly upon angiogenic stimulation. To allow growth of new vessel branches, ECs therefore need to adjust their metabolism to increase energy production and biosynthetic activity. However, the molecular mechanisms that coordinate EC metabolism with angiogenic signalling are not known to date. In this proposal, we put forth the hypothesis that metabolic regulation is a key component of the endothelial angiogenic machinery that is required to sustain vessel growth. Thus, this proposal aims (I) to define transcriptional circuits that link EC growth with metabolism, (II) to explore the regulation of these transcriptional networks by lysine acetylation, a nutrient-regulated protein modification with key functions in metabolism, and (III) to assess the role of sirtuin deacetylases for sensing endothelial energetics during vascular growth. Understanding the principles of angiogenesis-metabolism crosstalk will not only yield novel insights into the basic mechanisms of vessel formation but will also provide unprecedented opportunities for future drug development."
Max ERC Funding
1 487 920 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym APHIDHOST
Project Molecular determinants of aphid host range
Researcher (PI) Jorunn Indra Berit Bos
Host Institution (HI) THE JAMES HUTTON INSTITUTE
Country United Kingdom
Call Details Starting Grant (StG), LS9, ERC-2012-StG_20111109
Summary Many aphid species are restricted to one or few host plants, while some aphids, many of which are of agricultural importance, can infest a wide range of plant species. An important observation is that aphids spend a considerable time on nonhost species, where they probe the leaf tissue and secrete saliva, but for unknown reasons are unable to ingest phloem sap. This suggest that aphids, like plant pathogens, interact with nonhost plants at the molecular level, but potentially are not successful in suppressing plant defenses and/or releasing nutrients. To date, however, the plant cellular changes and the involvement of immune response, such as ETI and PTI, in aphid-host and -nonhost interactions remain elusive. The aim of the proposed project is to gain insight into the level of cellular host reprogramming that takes place during aphid-host interactions, the cellular processes involved in aphid nonhost resistance, and the role of aphid effectors in determining host range. We will compare interactions of two economically important aphid species, Myzus persicae (green peach aphid) and Rhopalosiphum padi (bird cherry oat aphid), with host and nonhost plants. We will investigate local changes in plant cellular processes during aphid-host and -nonhost interactions using microscopy and biochemistry approaches. We will apply a comparative transcriptomics approach and functional assays to identify aphid effectors as potential determinants of host range. Herein we will specifically looks for aphids-species specific effectors and those that are expressed in specific host interactions. To gain insight into molecular mechanisms of effector activities we will identify host targets and investigate the contribution of effector-target interactions to host range. The expected outcomes of the project will, in the long term, contribute to the development of novel strategies to control infestations by aphids and potentially other pests and pathogens, thereby improving food security.
Summary
Many aphid species are restricted to one or few host plants, while some aphids, many of which are of agricultural importance, can infest a wide range of plant species. An important observation is that aphids spend a considerable time on nonhost species, where they probe the leaf tissue and secrete saliva, but for unknown reasons are unable to ingest phloem sap. This suggest that aphids, like plant pathogens, interact with nonhost plants at the molecular level, but potentially are not successful in suppressing plant defenses and/or releasing nutrients. To date, however, the plant cellular changes and the involvement of immune response, such as ETI and PTI, in aphid-host and -nonhost interactions remain elusive. The aim of the proposed project is to gain insight into the level of cellular host reprogramming that takes place during aphid-host interactions, the cellular processes involved in aphid nonhost resistance, and the role of aphid effectors in determining host range. We will compare interactions of two economically important aphid species, Myzus persicae (green peach aphid) and Rhopalosiphum padi (bird cherry oat aphid), with host and nonhost plants. We will investigate local changes in plant cellular processes during aphid-host and -nonhost interactions using microscopy and biochemistry approaches. We will apply a comparative transcriptomics approach and functional assays to identify aphid effectors as potential determinants of host range. Herein we will specifically looks for aphids-species specific effectors and those that are expressed in specific host interactions. To gain insight into molecular mechanisms of effector activities we will identify host targets and investigate the contribution of effector-target interactions to host range. The expected outcomes of the project will, in the long term, contribute to the development of novel strategies to control infestations by aphids and potentially other pests and pathogens, thereby improving food security.
Max ERC Funding
1 463 840 €
Duration
Start date: 2013-02-01, End date: 2018-10-31
Project acronym ASTROLAB
Project Cold Collisions and the Pathways Toward Life in Interstellar Space
Researcher (PI) Holger Kreckel
Host Institution (HI) Klinik Max Planck Institut für Psychiatrie
Country Germany
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Modern telescopes like Herschel and ALMA open up a new window into molecular astrophysics to investigate a surprisingly rich chemistry that operates even at low densities and low temperatures. Observations with these instruments have the potential of unraveling key questions of astrobiology, like the accumulation of water and pre-biotic organic molecules on (exo)planets from asteroids and comets. Hand-in-hand with the heightened observational activities comes a strong demand for a thorough understanding of the molecular formation mechanisms. The vast majority of interstellar molecules are formed in ion-neutral reactions that remain efficient even at low temperatures. Unfortunately, the unusual nature of these processes under terrestrial conditions makes their laboratory study extremely difficult.
To address these issues, I propose to build a versatile merged beams setup for laboratory studies of ion-neutral collisions at the Cryogenic Storage Ring (CSR), the most ambitious of the next-generation storage devices under development worldwide. With this experimental setup, I will make use of a low-temperature and low-density environment that is ideal to simulate the conditions prevailing in interstellar space. The cryogenic surrounding, in combination with laser-generated ground state atom beams, will allow me to perform precise energy-resolved rate coefficient measurements for reactions between cold molecular ions (like, e.g., H2+, H3+, HCO+, CH2+, CH3+, etc.) and neutral atoms (H, D, C or O) in order to shed light on long-standing problems of astrochemistry and the formation of organic molecules in space.
With the large variability of the collision energy (corresponding to 40-40000 K), I will be able to provide data that are crucial for the interpretation of molecular observations in a variety of objects, ranging from cold molecular clouds to warm layers in protoplanetary disks.
Summary
Modern telescopes like Herschel and ALMA open up a new window into molecular astrophysics to investigate a surprisingly rich chemistry that operates even at low densities and low temperatures. Observations with these instruments have the potential of unraveling key questions of astrobiology, like the accumulation of water and pre-biotic organic molecules on (exo)planets from asteroids and comets. Hand-in-hand with the heightened observational activities comes a strong demand for a thorough understanding of the molecular formation mechanisms. The vast majority of interstellar molecules are formed in ion-neutral reactions that remain efficient even at low temperatures. Unfortunately, the unusual nature of these processes under terrestrial conditions makes their laboratory study extremely difficult.
To address these issues, I propose to build a versatile merged beams setup for laboratory studies of ion-neutral collisions at the Cryogenic Storage Ring (CSR), the most ambitious of the next-generation storage devices under development worldwide. With this experimental setup, I will make use of a low-temperature and low-density environment that is ideal to simulate the conditions prevailing in interstellar space. The cryogenic surrounding, in combination with laser-generated ground state atom beams, will allow me to perform precise energy-resolved rate coefficient measurements for reactions between cold molecular ions (like, e.g., H2+, H3+, HCO+, CH2+, CH3+, etc.) and neutral atoms (H, D, C or O) in order to shed light on long-standing problems of astrochemistry and the formation of organic molecules in space.
With the large variability of the collision energy (corresponding to 40-40000 K), I will be able to provide data that are crucial for the interpretation of molecular observations in a variety of objects, ranging from cold molecular clouds to warm layers in protoplanetary disks.
Max ERC Funding
1 486 800 €
Duration
Start date: 2012-09-01, End date: 2017-11-30
Project acronym ATTOCO
Project Attosecond tracing of collective dynamics
in clusters and nanoparticles
Researcher (PI) Matthias Friedrich Kling
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary Collective electron motion can unfold on attosecond time scales in nanoplasmonic systems, as defined by the inverse spectral bandwidth of the plasmonic resonant region. Similarly, in dielectrics or semiconductors, the laser-driven collective motion of electrons can occur on this characteristic time scale. Until now, such collective electron dynamics has not been directly observed on its natural, attosecond timescale. In ATTOCO, the attosecond, sub-cycle dynamics of strong-field driven collective electron dynamics in clusters and nanoparticles will be explored. Moreover, we will explore field-dependent processes induced by strong laser fields in nanometer sized matter, such as the metallization of dielectrics, which has been recently proposed theoretically.
In order to map the collective electron motion we will apply the attosecond nanoplasmonic streaking technique, which has been proposed and developed theoretically. In this approach, the temporal resolution is achieved by limiting the emission of high energetic, direct photoelectrons to a sub-cycle time window using attosecond XUV pulses phase-locked to a driving few-cycle near-infrared field. Kinetic energy spectra of the photoelectrons recorded for different delays between the excitation field and the ionizing XUV pulse will allow extracting the spatio-temporal electron dynamics. ATTOCO offers the capability to measure field-induced material changes in real-time and to gain novel insight into collective electron dynamics. In particular, we aim to learn from ATTOCO in detail, how the collective electron motion is established, how the collective motion is driven by the strong external field and over which pathways and timescale the collective motion decays.
ATTOCO provides also a major step in the development of lightwave (nano-)electronics, which may push the frontiers of electronics from multi-gigahertz to petahertz frequencies. If successfully accomplished, this development will herald the potential scalability of electron-based information technologies to lightwave frequencies, surpassing the speed of current computation and communication technology by many orders of magnitude.
Summary
Collective electron motion can unfold on attosecond time scales in nanoplasmonic systems, as defined by the inverse spectral bandwidth of the plasmonic resonant region. Similarly, in dielectrics or semiconductors, the laser-driven collective motion of electrons can occur on this characteristic time scale. Until now, such collective electron dynamics has not been directly observed on its natural, attosecond timescale. In ATTOCO, the attosecond, sub-cycle dynamics of strong-field driven collective electron dynamics in clusters and nanoparticles will be explored. Moreover, we will explore field-dependent processes induced by strong laser fields in nanometer sized matter, such as the metallization of dielectrics, which has been recently proposed theoretically.
In order to map the collective electron motion we will apply the attosecond nanoplasmonic streaking technique, which has been proposed and developed theoretically. In this approach, the temporal resolution is achieved by limiting the emission of high energetic, direct photoelectrons to a sub-cycle time window using attosecond XUV pulses phase-locked to a driving few-cycle near-infrared field. Kinetic energy spectra of the photoelectrons recorded for different delays between the excitation field and the ionizing XUV pulse will allow extracting the spatio-temporal electron dynamics. ATTOCO offers the capability to measure field-induced material changes in real-time and to gain novel insight into collective electron dynamics. In particular, we aim to learn from ATTOCO in detail, how the collective electron motion is established, how the collective motion is driven by the strong external field and over which pathways and timescale the collective motion decays.
ATTOCO provides also a major step in the development of lightwave (nano-)electronics, which may push the frontiers of electronics from multi-gigahertz to petahertz frequencies. If successfully accomplished, this development will herald the potential scalability of electron-based information technologies to lightwave frequencies, surpassing the speed of current computation and communication technology by many orders of magnitude.
Max ERC Funding
1 498 500 €
Duration
Start date: 2013-06-01, End date: 2018-05-31