Project acronym A-FRO
Project Actively Frozen - contextual modulation of freezing and its neuronal basis
Researcher (PI) Marta de Aragao Pacheco Moita
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Country Portugal
Call Details Consolidator Grant (CoG), LS5, ERC-2018-COG
Summary When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Summary
When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Max ERC Funding
1 969 750 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym AlgoFinance
Project Algorithmic Finance: Inquiring into the Reshaping of Financial Markets
Researcher (PI) Christian BORCH
Host Institution (HI) COPENHAGEN BUSINESS SCHOOL
Country Denmark
Call Details Consolidator Grant (CoG), SH3, ERC-2016-COG
Summary Present-day financial markets are turning algorithmic, as market orders are increasingly being executed by fully automated computer algorithms, without any direct human intervention. Although algorithmic finance seems to fundamentally reshape the central dynamics in financial markets, and even though it prompts core sociological questions, it has not yet received any systematic attention. In a pioneering contribution to economic sociology and social studies of finance, ALGOFINANCE aims to understand how and with what consequences the turn to algorithms is changing financial markets. The overall concept and central contributions of ALGOFINANCE are the following: (1) on an intra-firm level, the project examines how the shift to algorithmic finance reshapes the ways in which trading firms operate, and does so by systematically and empirically investigating the reconfiguration of organizational structures and employee subjectivity; (2) on an inter-algorithmic level, it offers a ground-breaking methodology (agent-based modelling informed by qualitative data) to grasp how trading algorithms interact with one another in a fully digital space; and (3) on the level of market sociality, it proposes a novel theorization of how intra-firm and inter-algorithmic dynamics can be conceived of as introducing a particular form of sociality that is characteristic to algorithmic finance: a form of sociality-as-association heuristically analyzed as imitation. None of these three levels have received systematic attention in the state-of-the-art literature. Addressing them will significantly advance the understanding of present-day algorithmic finance in economic sociology. By contributing novel empirical, methodological, and theoretical understandings of the functioning and consequences of algorithms, ALGOFINANCE will pave the way for other research into digital sociology and the broader algorithmization of society.
Summary
Present-day financial markets are turning algorithmic, as market orders are increasingly being executed by fully automated computer algorithms, without any direct human intervention. Although algorithmic finance seems to fundamentally reshape the central dynamics in financial markets, and even though it prompts core sociological questions, it has not yet received any systematic attention. In a pioneering contribution to economic sociology and social studies of finance, ALGOFINANCE aims to understand how and with what consequences the turn to algorithms is changing financial markets. The overall concept and central contributions of ALGOFINANCE are the following: (1) on an intra-firm level, the project examines how the shift to algorithmic finance reshapes the ways in which trading firms operate, and does so by systematically and empirically investigating the reconfiguration of organizational structures and employee subjectivity; (2) on an inter-algorithmic level, it offers a ground-breaking methodology (agent-based modelling informed by qualitative data) to grasp how trading algorithms interact with one another in a fully digital space; and (3) on the level of market sociality, it proposes a novel theorization of how intra-firm and inter-algorithmic dynamics can be conceived of as introducing a particular form of sociality that is characteristic to algorithmic finance: a form of sociality-as-association heuristically analyzed as imitation. None of these three levels have received systematic attention in the state-of-the-art literature. Addressing them will significantly advance the understanding of present-day algorithmic finance in economic sociology. By contributing novel empirical, methodological, and theoretical understandings of the functioning and consequences of algorithms, ALGOFINANCE will pave the way for other research into digital sociology and the broader algorithmization of society.
Max ERC Funding
1 590 036 €
Duration
Start date: 2017-05-01, End date: 2021-04-30
Project acronym ConTExt
Project Connecting the Extreme
Researcher (PI) Sune Toft
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Consolidator Grant (CoG), PE9, ERC-2014-CoG
Summary Advances in technology and methodology over the last decade, have enabled the study of galaxies to the highest redshifts. This has revolutionized our understanding of the origin and evolution of galaxies. I have played a central role in this revolution, by discovering that at z=2, when the universe was only 3 Gyr old, half of the most massive galaxies were extremely compact and had already completed their star formation. During the last five years I have led a successful group of postdocs and students dedicated to investigating the extreme properties of these galaxies and place them into cosmological context. Combining a series of high profile observational studies published by my group and others, I recently proposed an evolutionary sequence that ties together the most extreme galaxies in the universe, from the most intense dusty starburst at cosmic dawn, through quasars: the brightest sources in the universe, driven by feedback from supermassive black holes, and galaxy cores hosting the densest conglomerations of stellar mass known, to the sleeping giants of the local universe, the giant ellipticals. The proposed research program will explore if such an evolutionary sequence exists, with the ultimate goal of reaching, for the first time, a coherent physical understanding of how the most massive galaxies in the universe formed. While there is a chance the rigorous tests may ultimately reveal the proposed sequence to be too simplistic, a guarantied outcome of the program is a significantly improved understanding of the physical mechanisms that shape galaxies and drive their star formation and quenching
Summary
Advances in technology and methodology over the last decade, have enabled the study of galaxies to the highest redshifts. This has revolutionized our understanding of the origin and evolution of galaxies. I have played a central role in this revolution, by discovering that at z=2, when the universe was only 3 Gyr old, half of the most massive galaxies were extremely compact and had already completed their star formation. During the last five years I have led a successful group of postdocs and students dedicated to investigating the extreme properties of these galaxies and place them into cosmological context. Combining a series of high profile observational studies published by my group and others, I recently proposed an evolutionary sequence that ties together the most extreme galaxies in the universe, from the most intense dusty starburst at cosmic dawn, through quasars: the brightest sources in the universe, driven by feedback from supermassive black holes, and galaxy cores hosting the densest conglomerations of stellar mass known, to the sleeping giants of the local universe, the giant ellipticals. The proposed research program will explore if such an evolutionary sequence exists, with the ultimate goal of reaching, for the first time, a coherent physical understanding of how the most massive galaxies in the universe formed. While there is a chance the rigorous tests may ultimately reveal the proposed sequence to be too simplistic, a guarantied outcome of the program is a significantly improved understanding of the physical mechanisms that shape galaxies and drive their star formation and quenching
Max ERC Funding
1 999 526 €
Duration
Start date: 2015-09-01, End date: 2021-02-28
Project acronym CoreSat
Project Dynamics of Earth’s core from multi-satellite observations
Researcher (PI) Christopher FINLAY
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Country Denmark
Call Details Consolidator Grant (CoG), PE10, ERC-2017-COG
Summary Earth's magnetic field plays a fundamental role in our planetary
habitat, controlling interactions between the Earth and the solar wind.
Here, I propose to use magnetic observations, made simultaneously by
multiple satellites, along with numerical models of outer core dynamics,
to test whether convective processes can account for ongoing changes in
the field. The geomagnetic field is generated by a dynamo process
within the core converting kinetic energy of the moving liquid metal
into magnetic energy. Yet observations show a region of persistently
weak field in the South Atlantic that has grown in size in recent
decades. Pinning down the core dynamics responsible for this behaviour
is essential if we are to understand the detailed time-dependence of the
geodynamo, and to forecast future field changes.
Global magnetic observations from the Swarm constellation mission, with
three identical satellites now carrying out the most detailed ever
survey of the geomagnetic field, provide an exciting opportunity to
probe the dynamics of the core in exquisite detail. To exploit this
wealth of data, it is urgent that contaminating magnetic sources in the
lithosphere and ionosphere are better separated from the core-generated
field. I propose to achieve this, and to test the hypothesis that core
convection has controlled the recent field evolution in the South
Atlantic, via three interlinked projects. First I will co-estimate
separate models for the lithospheric and core fields, making use of
prior information from crustal geology and dynamo theory. In parallel,
I will develop a new scheme for isolating and removing the signature of
polar ionospheric currents, better utilising ground-based data. Taking
advantage of these improvements, data from Swarm and previous missions
will be reprocessed and then assimilated into a purpose-built model of
quasi-geostrophic core convection.
Summary
Earth's magnetic field plays a fundamental role in our planetary
habitat, controlling interactions between the Earth and the solar wind.
Here, I propose to use magnetic observations, made simultaneously by
multiple satellites, along with numerical models of outer core dynamics,
to test whether convective processes can account for ongoing changes in
the field. The geomagnetic field is generated by a dynamo process
within the core converting kinetic energy of the moving liquid metal
into magnetic energy. Yet observations show a region of persistently
weak field in the South Atlantic that has grown in size in recent
decades. Pinning down the core dynamics responsible for this behaviour
is essential if we are to understand the detailed time-dependence of the
geodynamo, and to forecast future field changes.
Global magnetic observations from the Swarm constellation mission, with
three identical satellites now carrying out the most detailed ever
survey of the geomagnetic field, provide an exciting opportunity to
probe the dynamics of the core in exquisite detail. To exploit this
wealth of data, it is urgent that contaminating magnetic sources in the
lithosphere and ionosphere are better separated from the core-generated
field. I propose to achieve this, and to test the hypothesis that core
convection has controlled the recent field evolution in the South
Atlantic, via three interlinked projects. First I will co-estimate
separate models for the lithospheric and core fields, making use of
prior information from crustal geology and dynamo theory. In parallel,
I will develop a new scheme for isolating and removing the signature of
polar ionospheric currents, better utilising ground-based data. Taking
advantage of these improvements, data from Swarm and previous missions
will be reprocessed and then assimilated into a purpose-built model of
quasi-geostrophic core convection.
Max ERC Funding
1 828 708 €
Duration
Start date: 2018-03-01, End date: 2023-08-31
Project acronym CRIMTANG
Project Criminal Entanglements.A new ethnographic approach to transnational organised crime.
Researcher (PI) Henrik VIGH
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Consolidator Grant (CoG), SH3, ERC-2016-COG
Summary Linked to terrorism, moral breakdown, and societal decay, Transnational Organised Crime (TOC) has come to embody current global anxieties as a figure of fear and cause of disquiet. Yet despite its central position on the social and political radar, our knowledge of it remains limited and fragmentary. Quantitative analyses may have identified the scale of the problem, but its underlying socio-cultural logic and practices remain under-researched and largely obscure. TOC is on the rise, and we need better insights into how it develops and expands, who engages in it and why, and how it is linked to and embedded in social networks that straddle countries and contexts.
CRIMTANG proposes a unique approach to the study of the social infrastructure of contemporary TOC. It develops a research strategy that is ethnographic and transnational in design and so attuned to the human flows and formations of TOC. The project comprises a trans-disciplinary research team of anthropologists, criminologists and political scientists, and builds on their prior experience of the people, regions and languages under study. It explores the illegal and overlapping flows of migrants and drugs from North-West Africa into Europe, following a key trafficking trajectory stretching from Tangiers to Barcelona, Paris and beyond.
In so doing, CRIMTANG sheds new light on the actual empirical processes in operation at different points along this trafficking route, whilst simultaneously developing new theoretical and methodological apparatuses for apprehending TOC that can be exported and applied in other regions and contexts. It reimagines the idea of social entanglement and proposes new transnational and collective fieldwork strategies. Finally, it will advance and consolidate the European research environment on TOC by creating a research hub for transnational ethnographic criminology at the University of Copenhagen.
Summary
Linked to terrorism, moral breakdown, and societal decay, Transnational Organised Crime (TOC) has come to embody current global anxieties as a figure of fear and cause of disquiet. Yet despite its central position on the social and political radar, our knowledge of it remains limited and fragmentary. Quantitative analyses may have identified the scale of the problem, but its underlying socio-cultural logic and practices remain under-researched and largely obscure. TOC is on the rise, and we need better insights into how it develops and expands, who engages in it and why, and how it is linked to and embedded in social networks that straddle countries and contexts.
CRIMTANG proposes a unique approach to the study of the social infrastructure of contemporary TOC. It develops a research strategy that is ethnographic and transnational in design and so attuned to the human flows and formations of TOC. The project comprises a trans-disciplinary research team of anthropologists, criminologists and political scientists, and builds on their prior experience of the people, regions and languages under study. It explores the illegal and overlapping flows of migrants and drugs from North-West Africa into Europe, following a key trafficking trajectory stretching from Tangiers to Barcelona, Paris and beyond.
In so doing, CRIMTANG sheds new light on the actual empirical processes in operation at different points along this trafficking route, whilst simultaneously developing new theoretical and methodological apparatuses for apprehending TOC that can be exported and applied in other regions and contexts. It reimagines the idea of social entanglement and proposes new transnational and collective fieldwork strategies. Finally, it will advance and consolidate the European research environment on TOC by creating a research hub for transnational ethnographic criminology at the University of Copenhagen.
Max ERC Funding
1 999 909 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym DDRegulation
Project Regulation of DNA damage responses at the replication fork
Researcher (PI) Niels Mailand
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Consolidator Grant (CoG), LS1, ERC-2013-CoG
Summary This project aims at delineating the regulatory signaling processes that enable cells to overcome DNA damage during DNA replication, a major challenge to the integrity of the genome as the normal replication machinery is unable to replicate past DNA lesions. This may result in collapse of the replication fork, potentially giving rise to gross genomic alterations. To mitigate this threat, all cells have evolved DNA damage bypass strategies such as translesion DNA synthesis (TLS), involving low fidelity DNA polymerases that can replicate damaged DNA, albeit in an error-prone manner, offering a trade-off between limited mutagenesis and gross chromosomal instability. How DNA damage bypass pathways are regulated and integrated with DNA replication and repair remain poorly resolved questions fundamental to understanding genome stability maintenance and disease onset. Regulatory signaling mediated by the small modifier protein ubiquitin has a prominent role in orchestrating the reorganization of the replication fork necessary for overcoming DNA lesions, but this involvement has not been systematically explored. To remedy these gaps in our knowledge, I propose to implement a series of innovative complementary strategies to isolate and identify the regulatory factors and ubiquitin-dependent processes that promote DNA damage responses at the replication fork, allowing for subsequent in-depth characterization of their roles in protecting genome integrity by targeted functional studies. This project will enable an advanced level of mechanistic insight into key regulatory processes underlying replication-associated DNA damage responses that has not been feasible to achieve with exisiting methodologies, providing a realistic outlook for groundbreaking discoveries that will open up many new avenues for further research into mechanisms and biological functions of regulatory signaling processes in the DNA damage response and beyond.
Summary
This project aims at delineating the regulatory signaling processes that enable cells to overcome DNA damage during DNA replication, a major challenge to the integrity of the genome as the normal replication machinery is unable to replicate past DNA lesions. This may result in collapse of the replication fork, potentially giving rise to gross genomic alterations. To mitigate this threat, all cells have evolved DNA damage bypass strategies such as translesion DNA synthesis (TLS), involving low fidelity DNA polymerases that can replicate damaged DNA, albeit in an error-prone manner, offering a trade-off between limited mutagenesis and gross chromosomal instability. How DNA damage bypass pathways are regulated and integrated with DNA replication and repair remain poorly resolved questions fundamental to understanding genome stability maintenance and disease onset. Regulatory signaling mediated by the small modifier protein ubiquitin has a prominent role in orchestrating the reorganization of the replication fork necessary for overcoming DNA lesions, but this involvement has not been systematically explored. To remedy these gaps in our knowledge, I propose to implement a series of innovative complementary strategies to isolate and identify the regulatory factors and ubiquitin-dependent processes that promote DNA damage responses at the replication fork, allowing for subsequent in-depth characterization of their roles in protecting genome integrity by targeted functional studies. This project will enable an advanced level of mechanistic insight into key regulatory processes underlying replication-associated DNA damage responses that has not been feasible to achieve with exisiting methodologies, providing a realistic outlook for groundbreaking discoveries that will open up many new avenues for further research into mechanisms and biological functions of regulatory signaling processes in the DNA damage response and beyond.
Max ERC Funding
1 996 356 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym Des.solve
Project When solids become liquids: natural deep eutectic solvents for chemical process engineering
Researcher (PI) Ana Rita CRUZ DUARTE
Host Institution (HI) NOVA ID FCT - ASSOCIACAO PARA A INOVACAO E DESENVOLVIMENTO DA FCT
Country Portugal
Call Details Consolidator Grant (CoG), PE8, ERC-2016-COG
Summary Sugars, aminoacids or organic acids are typically solid at room temperature. Nonetheless when combined at a particular molar fraction they present a high melting point depression, becoming liquids at room temperature. These are called Natural Deep Eutectic Solvents – NADES. NADES are envisaged to play a major role on different chemical engineering processes in the future. Nonetheless, there is a significant lack of knowledge on fundamental and basic research on NADES, which is hindering their industrial applications. For this reason it is important to extend the knowledge on these systems, boosting their application development. NADES applications go beyond chemical or materials engineering and cover a wide range of fields from biocatalysis, extraction, electrochemistry, carbon dioxide capture or biomedical applications. Des.solve encompasses four major themes of research: 1 – Development of NADES and therapeutic deep eutectic solvents – THEDES; 2 – Characterization of the obtained mixtures and computer simulation of NADES/THEDES properties; 3 – Phase behaviour of binary/ternary systems NADES/THEDES + carbon dioxide and thermodynamic modelling 4 – Application development. Starting from the development of novel NADES/THEDES which, by different characterization techniques, will be deeply studied and characterized, the essential raw-materials will be produced for the subsequent research activities. The envisaged research involves modelling and molecular simulations. Des.solve will be deeply engaged in application development, particularly in extraction, biocatalysis and pharmaceutical/biomedical applications. The knowledge that will be created in this proposal is expected not only to have a major impact in the scientific community, but also in society, economy and industry.
Summary
Sugars, aminoacids or organic acids are typically solid at room temperature. Nonetheless when combined at a particular molar fraction they present a high melting point depression, becoming liquids at room temperature. These are called Natural Deep Eutectic Solvents – NADES. NADES are envisaged to play a major role on different chemical engineering processes in the future. Nonetheless, there is a significant lack of knowledge on fundamental and basic research on NADES, which is hindering their industrial applications. For this reason it is important to extend the knowledge on these systems, boosting their application development. NADES applications go beyond chemical or materials engineering and cover a wide range of fields from biocatalysis, extraction, electrochemistry, carbon dioxide capture or biomedical applications. Des.solve encompasses four major themes of research: 1 – Development of NADES and therapeutic deep eutectic solvents – THEDES; 2 – Characterization of the obtained mixtures and computer simulation of NADES/THEDES properties; 3 – Phase behaviour of binary/ternary systems NADES/THEDES + carbon dioxide and thermodynamic modelling 4 – Application development. Starting from the development of novel NADES/THEDES which, by different characterization techniques, will be deeply studied and characterized, the essential raw-materials will be produced for the subsequent research activities. The envisaged research involves modelling and molecular simulations. Des.solve will be deeply engaged in application development, particularly in extraction, biocatalysis and pharmaceutical/biomedical applications. The knowledge that will be created in this proposal is expected not only to have a major impact in the scientific community, but also in society, economy and industry.
Max ERC Funding
1 877 006 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym DYCOCIRC
Project Basal ganglia circuit mechanisms underlying dynamic cognitive behavior
Researcher (PI) Joseph PATON
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Country Portugal
Call Details Consolidator Grant (CoG), LS5, ERC-2017-COG
Summary You’re faced with a difficult choice. What do you do? Most people will, either explicitly or implicitly, weigh the possible consequences their decision. This involves an internal journey through possible events. Its these kinds of dynamic processes and their mapping onto behavior that characterize higher brain function. And yet, their very internal nature is both what makes them of critical interest and so difficult to study. Here, we propose to study a simple, well-controlled decision-making behavior wherein mice have to generate a dynamic, internal representation of elapsed time in order to make choices that result in reward. We focus on frontal cortico-basal ganglia circuits and their dopaminergic inputs that together are broadly implicated in cognition and involved in the production of this particular behavior. We have demonstrated previously that striatal population dynamics and dopamine neuron activity both correlate with and exert control over animals’ judgments. Having identified key signals at multiple stages of the BG circuit related to this decision in rats and mice, my laboratory is now uniquely poised to dissect the circuit mechanisms by which such signals are generated and transformed into actions. Specifically, we will 1) Measure activity of specific cell types at multiple stages of the BG as mice judge duration. 2) Image and manipulate the activity of DA neurons while recording from neural populations in the BG to determine the relationship between neuromodulatory input, neural dynamics, and behavior. 3) Relate the activity of cortico-striatal inputs to striatal responses during behavior to understand the computational and circuit bases of striatal activity. These experiments promise to unlock deep mysteries regarding how animals free themselves from the immediacy of the current moment, learning, planning, and choosing their path toward a safer, more fruitful, and satisfying existence.
Summary
You’re faced with a difficult choice. What do you do? Most people will, either explicitly or implicitly, weigh the possible consequences their decision. This involves an internal journey through possible events. Its these kinds of dynamic processes and their mapping onto behavior that characterize higher brain function. And yet, their very internal nature is both what makes them of critical interest and so difficult to study. Here, we propose to study a simple, well-controlled decision-making behavior wherein mice have to generate a dynamic, internal representation of elapsed time in order to make choices that result in reward. We focus on frontal cortico-basal ganglia circuits and their dopaminergic inputs that together are broadly implicated in cognition and involved in the production of this particular behavior. We have demonstrated previously that striatal population dynamics and dopamine neuron activity both correlate with and exert control over animals’ judgments. Having identified key signals at multiple stages of the BG circuit related to this decision in rats and mice, my laboratory is now uniquely poised to dissect the circuit mechanisms by which such signals are generated and transformed into actions. Specifically, we will 1) Measure activity of specific cell types at multiple stages of the BG as mice judge duration. 2) Image and manipulate the activity of DA neurons while recording from neural populations in the BG to determine the relationship between neuromodulatory input, neural dynamics, and behavior. 3) Relate the activity of cortico-striatal inputs to striatal responses during behavior to understand the computational and circuit bases of striatal activity. These experiments promise to unlock deep mysteries regarding how animals free themselves from the immediacy of the current moment, learning, planning, and choosing their path toward a safer, more fruitful, and satisfying existence.
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym EXCHANGE
Project Forensic Geneticists and the Transnational Exchange of DNA data in the EU: Engaging Science with Social Control, Citizenship and Democracy
Researcher (PI) Helena Cristina Ferreira Machado
Host Institution (HI) UNIVERSIDADE DO MINHO
Country Portugal
Call Details Consolidator Grant (CoG), SH2, ERC-2014-CoG
Summary Today we are living in the “genetic age” of criminal investigation. There is a widespread cultural belief that DNA technology has the unrivalled capacity to identify authors of crimes. In light of this ideology, EU Law (Prüm Decision, 2008) obliges all Member States to create the conditions for the reciprocal automated searching and comparison of information on DNA data for the purpose of combating cross-border crime, terrorism and illegal immigration. Forensic geneticists play a crucial role in this scenario: they develop the techno-scientific procedures that enable DNA data to be shared across national boundaries. EXCHANGE aims to understand the close links between a highly specialised field of expert knowledge – forensic genetics – and surveillance in the EU.
If the EU succeeds in this political project, about 10 million genetic profiles of identified individuals will be exchanged between agencies in all EU countries. This raises acute cultural, political and societal challenges. EXCHANGE aims to address these challenges by scrutinizing how forensic geneticists, within the context of the transnational exchange of DNA data in the EU, engage with the social values attributed to science – i.e. objectivity, truth – and the values of social control, citizenship and democracy.
The expected outputs are: 1. To provide a general picture of the Prüm framework by conducting interviews with forensic geneticists in all EU countries; 2. To develop in-depth knowledge of forensic geneticists’ activities relating to Prüm using ethnographic observation and qualitative analysis of criminal cases; 3. To study countries with different local positionings in relation to Prüm by means of a comparative study involving Portugal, Germany, the Netherlands and the UK. EXCHANGE stimulates interdisciplinary dialogue between the social sciences and the forensic genetics. This research also tackles questions that are relevant to all the actors involved in criminal justice cooperation in the EU.
Summary
Today we are living in the “genetic age” of criminal investigation. There is a widespread cultural belief that DNA technology has the unrivalled capacity to identify authors of crimes. In light of this ideology, EU Law (Prüm Decision, 2008) obliges all Member States to create the conditions for the reciprocal automated searching and comparison of information on DNA data for the purpose of combating cross-border crime, terrorism and illegal immigration. Forensic geneticists play a crucial role in this scenario: they develop the techno-scientific procedures that enable DNA data to be shared across national boundaries. EXCHANGE aims to understand the close links between a highly specialised field of expert knowledge – forensic genetics – and surveillance in the EU.
If the EU succeeds in this political project, about 10 million genetic profiles of identified individuals will be exchanged between agencies in all EU countries. This raises acute cultural, political and societal challenges. EXCHANGE aims to address these challenges by scrutinizing how forensic geneticists, within the context of the transnational exchange of DNA data in the EU, engage with the social values attributed to science – i.e. objectivity, truth – and the values of social control, citizenship and democracy.
The expected outputs are: 1. To provide a general picture of the Prüm framework by conducting interviews with forensic geneticists in all EU countries; 2. To develop in-depth knowledge of forensic geneticists’ activities relating to Prüm using ethnographic observation and qualitative analysis of criminal cases; 3. To study countries with different local positionings in relation to Prüm by means of a comparative study involving Portugal, Germany, the Netherlands and the UK. EXCHANGE stimulates interdisciplinary dialogue between the social sciences and the forensic genetics. This research also tackles questions that are relevant to all the actors involved in criminal justice cooperation in the EU.
Max ERC Funding
1 838 150 €
Duration
Start date: 2015-10-01, End date: 2021-09-30
Project acronym F-BioIce
Project Fundamentals of Biological Ice Nucleation
Researcher (PI) Tobias WEIDNER
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Consolidator Grant (CoG), PE4, ERC-2018-COG
Summary Ice active bacteria can promote the growth of ice more effectively than any other material known. Using specialized ice nucleating proteins (INPs), they attack plants by frost damage and, when airborne in the atmosphere, they drive ice nucleation within clouds and control global precipitation patterns. The control INPs exert over water phase transitions has relevance for disciplines as diverse as climatology, plant pathology, biomedicine and material science. Despite the apparent importance, the molecular mechanisms behind INP freezing have remained largely elusive. This lack of our knowledge can be traced back to the challenges in studying protein and water structure and dynamics at the very interface between monolayers of proteins and water.
With F-BioIce my team and I want to reveal the molecular details of INP function. We ask the questions: What is the structural basis for protein control of freezing? What structural motifs do proteins use to interact with water, and what is the configuration of water molecules that INPs imprint into interfacial water layers? What is the role of structural dynamics and for surface freezing? We will develop new methods based on sum frequency generation (SFG) spectroscopy to determine mode of action by which INPs interact with and manipulate water. The INPs and water structure will be obtained by combining three rising methods in the field: SFG techniques that I have been spearheading, computer simulations and cryo-electron microscopy. We will study model water surfaces and, for the first time, realistic water aerosols interacting with INPs. These new strategies could lead to a paradigm shift in the entire field of ice nucleation and a search for similar processes in ice active fungi and pollen and abiotic ice nucleators – feldspar, silica and soot. The obtained information will provide critical input for climate models and revolutionary new freezing technologies for food preservation, cryomedicine and cloud seeding.
Summary
Ice active bacteria can promote the growth of ice more effectively than any other material known. Using specialized ice nucleating proteins (INPs), they attack plants by frost damage and, when airborne in the atmosphere, they drive ice nucleation within clouds and control global precipitation patterns. The control INPs exert over water phase transitions has relevance for disciplines as diverse as climatology, plant pathology, biomedicine and material science. Despite the apparent importance, the molecular mechanisms behind INP freezing have remained largely elusive. This lack of our knowledge can be traced back to the challenges in studying protein and water structure and dynamics at the very interface between monolayers of proteins and water.
With F-BioIce my team and I want to reveal the molecular details of INP function. We ask the questions: What is the structural basis for protein control of freezing? What structural motifs do proteins use to interact with water, and what is the configuration of water molecules that INPs imprint into interfacial water layers? What is the role of structural dynamics and for surface freezing? We will develop new methods based on sum frequency generation (SFG) spectroscopy to determine mode of action by which INPs interact with and manipulate water. The INPs and water structure will be obtained by combining three rising methods in the field: SFG techniques that I have been spearheading, computer simulations and cryo-electron microscopy. We will study model water surfaces and, for the first time, realistic water aerosols interacting with INPs. These new strategies could lead to a paradigm shift in the entire field of ice nucleation and a search for similar processes in ice active fungi and pollen and abiotic ice nucleators – feldspar, silica and soot. The obtained information will provide critical input for climate models and revolutionary new freezing technologies for food preservation, cryomedicine and cloud seeding.
Max ERC Funding
1 999 936 €
Duration
Start date: 2019-04-01, End date: 2024-03-31