Project acronym 1st-principles-discs
Project A First Principles Approach to Accretion Discs
Researcher (PI) Martin Elias Pessah
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Summary
Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Max ERC Funding
1 793 697 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym 3Ps
Project 3Ps
Plastic-Antibodies, Plasmonics and Photovoltaic-Cells: on-site screening of cancer biomarkers made possible
Researcher (PI) Maria Goreti Ferreira Sales
Host Institution (HI) INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO
Country Portugal
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary This project presents a new concept for the detection, diagnosis and monitoring of cancer biomarker patterns in point-of-care. The device under development will make use of the selectivity of the plastic antibodies as sensing materials and the interference they will play on the normal operation of a photovoltaic cell.
Plastic antibodies will be designed by surface imprinting procedures. Self-assembled monolayer and molecular imprinting techniques will be merged in this process because they allow the self-assembly of nanostructured materials on a “bottom-up” nanofabrication approach. A dye-sensitized solar cell will be used as photovoltaic cell. It includes a liquid interface in the cell circuit, which allows the introduction of the sample (also in liquid phase) without disturbing the normal cell operation. Furthermore, it works well with rather low cost materials and requires mild and easy processing conditions. The cell will be equipped with plasmonic structures to enhance light absorption and cell efficiency.
The device under development will be easily operated by any clinician or patient. It will require ambient light and a regular multimeter. Eye detection will be also tried out.
Summary
This project presents a new concept for the detection, diagnosis and monitoring of cancer biomarker patterns in point-of-care. The device under development will make use of the selectivity of the plastic antibodies as sensing materials and the interference they will play on the normal operation of a photovoltaic cell.
Plastic antibodies will be designed by surface imprinting procedures. Self-assembled monolayer and molecular imprinting techniques will be merged in this process because they allow the self-assembly of nanostructured materials on a “bottom-up” nanofabrication approach. A dye-sensitized solar cell will be used as photovoltaic cell. It includes a liquid interface in the cell circuit, which allows the introduction of the sample (also in liquid phase) without disturbing the normal cell operation. Furthermore, it works well with rather low cost materials and requires mild and easy processing conditions. The cell will be equipped with plasmonic structures to enhance light absorption and cell efficiency.
The device under development will be easily operated by any clinician or patient. It will require ambient light and a regular multimeter. Eye detection will be also tried out.
Max ERC Funding
998 584 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym HHPOLITICS
Project A Household Finance Theory of Political Attitudes and Political Behavior
Researcher (PI) David Dreyer Lassen
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), SH2, ERC-2012-StG_20111124
Summary "How do individuals insure themselves against economic shocks, as consumers and savers on their own, and as voters, through the political process? The recent financial and economic crisis has seen people lose their jobs and their housing equity, partly as a result of insufficient economic buffers in good times. What does this mean for social insurance? We need to understand the connection between household finances and political attitudes to social insurance and redistribution, both in good times and in bad.
I argue that in order to understand the political economy of redistribution and social insruance, we need to allow for imperfect asset markets in the form of liquidity (or credit) constraints and for asset holdings, including housing equity.
The goal of the project is to investigate theoretically and empirically on Danish data (i) how differences in liquidity constraints affect political attitudes and preferences; (ii) where such differences come from and what that means for understanding links between personal traits and personality, socio-economics and political attitudes and behaviour; (iii) how these insights can be used to understand political attitudes towards the new wave of neo-paternalistic policies (including so-called ‘nudging’) inspired by behavioural economic research; and (iv) whether differences in liquidity constraints can help us understand changes in political attitudes and preferences over the long-run.
The central empirical part of the project is to link uniquely detailed individual level high quality data from Danish administrative registers - including current and historical data on all tax-declared income sources, bank deposits, assets and liabilities, as well as detailed demographics, educational and occupational data - to a running, large-scale panel survey of a large random sample of adult Danes, and to extend this survey both in time and in scope, specifically with questions on political attitudes and political preferences."
Summary
"How do individuals insure themselves against economic shocks, as consumers and savers on their own, and as voters, through the political process? The recent financial and economic crisis has seen people lose their jobs and their housing equity, partly as a result of insufficient economic buffers in good times. What does this mean for social insurance? We need to understand the connection between household finances and political attitudes to social insurance and redistribution, both in good times and in bad.
I argue that in order to understand the political economy of redistribution and social insruance, we need to allow for imperfect asset markets in the form of liquidity (or credit) constraints and for asset holdings, including housing equity.
The goal of the project is to investigate theoretically and empirically on Danish data (i) how differences in liquidity constraints affect political attitudes and preferences; (ii) where such differences come from and what that means for understanding links between personal traits and personality, socio-economics and political attitudes and behaviour; (iii) how these insights can be used to understand political attitudes towards the new wave of neo-paternalistic policies (including so-called ‘nudging’) inspired by behavioural economic research; and (iv) whether differences in liquidity constraints can help us understand changes in political attitudes and preferences over the long-run.
The central empirical part of the project is to link uniquely detailed individual level high quality data from Danish administrative registers - including current and historical data on all tax-declared income sources, bank deposits, assets and liabilities, as well as detailed demographics, educational and occupational data - to a running, large-scale panel survey of a large random sample of adult Danes, and to extend this survey both in time and in scope, specifically with questions on political attitudes and political preferences."
Max ERC Funding
1 499 740 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym ITEPE
Project Institutional Transformation in European Political Economy
- A Socio-Legal Approach
Researcher (PI) Poul Fritz Kjaer
Host Institution (HI) COPENHAGEN BUSINESS SCHOOL
Country Denmark
Call Details Starting Grant (StG), SH2, ERC-2012-StG_20111124
Summary The objective is to develop a socio-legal theory explaining the institutional transformations from corporatism over neo-corporatism to governance and the role of law and legal instruments within the 3 types of institutions.
The period of investigation covers the period between 1850 and today and is limited to the European setting.
The core hypothesis is that corporatism, neo-corporatism and governance fulfil identical societal functions under altered structural conditions insofar as they simultaneously are oriented towards the internal stabilisation of economic processes and the establishment of compatibility with non-economic segments of society. The successful fulfilment of this dual function is furthermore conditioned upon a reliance on formalised legal frameworks.
In concrete the project wishes to provide an alternative to the a-historical nature of contemporary governance research; counter the lack of a dynamic perspective within the ‘varieties of capitalism’ approach; offset the reductionist stance of political economy studies as reflected in the narrowing of economy and society relations to the binary relationship between economy and politics; develop a theoretical framework capable of connecting a wide range of so far disperse academic discourses such as governance research, political economy and socio-legal studies; provide a central contribution to a new inter-systemic theory of society.
The project contains detailed case studies in relation to the development of institutional stabilisation within the European steel and pharmaceutical sectors.
Summary
The objective is to develop a socio-legal theory explaining the institutional transformations from corporatism over neo-corporatism to governance and the role of law and legal instruments within the 3 types of institutions.
The period of investigation covers the period between 1850 and today and is limited to the European setting.
The core hypothesis is that corporatism, neo-corporatism and governance fulfil identical societal functions under altered structural conditions insofar as they simultaneously are oriented towards the internal stabilisation of economic processes and the establishment of compatibility with non-economic segments of society. The successful fulfilment of this dual function is furthermore conditioned upon a reliance on formalised legal frameworks.
In concrete the project wishes to provide an alternative to the a-historical nature of contemporary governance research; counter the lack of a dynamic perspective within the ‘varieties of capitalism’ approach; offset the reductionist stance of political economy studies as reflected in the narrowing of economy and society relations to the binary relationship between economy and politics; develop a theoretical framework capable of connecting a wide range of so far disperse academic discourses such as governance research, political economy and socio-legal studies; provide a central contribution to a new inter-systemic theory of society.
The project contains detailed case studies in relation to the development of institutional stabilisation within the European steel and pharmaceutical sectors.
Max ERC Funding
1 175 210 €
Duration
Start date: 2013-02-01, End date: 2017-07-31
Project acronym LOBENA
Project Long Beamtime Experiments for Nuclear Astrophysics
Researcher (PI) Hans Otto Uldall Fynbo
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary The goal of LOBENA is to measure key properties needed for understanding nuclear processes in the Cosmos. Nuclear Astrophysics plays a key role in our quest to understand the origin and distribution of the chemical elements in our galaxy. Nuclear processes are crucial for understanding the energy production in the universe and are essential for describing the creation of chemical elements from the ashes of the Big Bang. Uncertainties in the nuclear physics can therefore influence our understanding of many astrophysical processes, both those involving stable stellar burning phases and explosive phenomena such as X-ray bursts, gamma-ray bursts and supernovae.
In LOBENA (LOng Beamtime Experiments for Nuclear Astrophysics) I will initiate a series of studies in Nuclear Astrophysics, which have in common the need for long beam times and the use of complete kinematics detection of several particles emitted in reactions. The core of the project will focus on the systems 8Be, 12C and 16O where today key open questions of great importance remain to answered. These questions can be addressed by reactions induced by low energy (<5MeV) beams of protons and 3He on light targets such as 6,7Li, 9Be, 10,11B and 19F using a newly developed complete kinematics detection procedure. The department of Physics and Astronomy in Aarhus provides a unique scene for doing these measurements since it provides accelerators where long beam time can be guarantied. LOBENA will also include complimentary experiments at international user facilities such as ISOLDE (CERN), KVI (Groningen), JYFL and (Jyväskylä).
With this ERC starting grant proposal I wish to start up my own group around Nuclear Astrophysics experiments in house and at international user facilities. With two Post Doc.s and a Ph.D. I will be much better able to fully exploit the scientific potential of the proposed research, which will also help to consolidate my own research career and give me more independence.
Summary
The goal of LOBENA is to measure key properties needed for understanding nuclear processes in the Cosmos. Nuclear Astrophysics plays a key role in our quest to understand the origin and distribution of the chemical elements in our galaxy. Nuclear processes are crucial for understanding the energy production in the universe and are essential for describing the creation of chemical elements from the ashes of the Big Bang. Uncertainties in the nuclear physics can therefore influence our understanding of many astrophysical processes, both those involving stable stellar burning phases and explosive phenomena such as X-ray bursts, gamma-ray bursts and supernovae.
In LOBENA (LOng Beamtime Experiments for Nuclear Astrophysics) I will initiate a series of studies in Nuclear Astrophysics, which have in common the need for long beam times and the use of complete kinematics detection of several particles emitted in reactions. The core of the project will focus on the systems 8Be, 12C and 16O where today key open questions of great importance remain to answered. These questions can be addressed by reactions induced by low energy (<5MeV) beams of protons and 3He on light targets such as 6,7Li, 9Be, 10,11B and 19F using a newly developed complete kinematics detection procedure. The department of Physics and Astronomy in Aarhus provides a unique scene for doing these measurements since it provides accelerators where long beam time can be guarantied. LOBENA will also include complimentary experiments at international user facilities such as ISOLDE (CERN), KVI (Groningen), JYFL and (Jyväskylä).
With this ERC starting grant proposal I wish to start up my own group around Nuclear Astrophysics experiments in house and at international user facilities. With two Post Doc.s and a Ph.D. I will be much better able to fully exploit the scientific potential of the proposed research, which will also help to consolidate my own research career and give me more independence.
Max ERC Funding
1 476 075 €
Duration
Start date: 2012-11-01, End date: 2018-10-31
Project acronym NanoTrigger
Project Triggerable nanomaterials to modulate cell activity
Researcher (PI) Lino Da Silva Ferreira
Host Institution (HI) CENTRO DE NEUROCIENCIAS E BIOLOGIACELULAR ASSOCIACAO
Country Portugal
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary The advent of molecular reprogramming and the associated opportunities for personalised and therapeutic medicine requires the development of novel systems for on-demand delivery of reprogramming factors into cells in order to modulate their activity/identity. Such triggerable systems should allow precise control of the timing, duration, magnitude and spatial release of the reprogramming factors. Furthermore, the system should allow this control even in vivo, using non-invasive means. The present project aims at developing triggerable systems able to release efficiently reprogramming factors on demand. The potential of this technology will be tested in two settings: (i) in the reprogramming of somatic cells in vitro, and (ii) in the improvement of hematopoietic stem cell engraftment in vivo, at the bone marrow. The proposed research involves a team formed by engineers, chemists, biologists and is highly multidisciplinary in nature encompassing elements of engineering, chemistry, system biology, stem cell technology and nanomedicine.
Summary
The advent of molecular reprogramming and the associated opportunities for personalised and therapeutic medicine requires the development of novel systems for on-demand delivery of reprogramming factors into cells in order to modulate their activity/identity. Such triggerable systems should allow precise control of the timing, duration, magnitude and spatial release of the reprogramming factors. Furthermore, the system should allow this control even in vivo, using non-invasive means. The present project aims at developing triggerable systems able to release efficiently reprogramming factors on demand. The potential of this technology will be tested in two settings: (i) in the reprogramming of somatic cells in vitro, and (ii) in the improvement of hematopoietic stem cell engraftment in vivo, at the bone marrow. The proposed research involves a team formed by engineers, chemists, biologists and is highly multidisciplinary in nature encompassing elements of engineering, chemistry, system biology, stem cell technology and nanomedicine.
Max ERC Funding
1 699 320 €
Duration
Start date: 2012-11-01, End date: 2017-10-31
Project acronym QIOS
Project Quantum Interfaces and Open Systems
Researcher (PI) Anders Soerensen
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary "Researchers have strived to obtain control of a variety of different quantum systems, each characterized by their own distinct advantages: quantum optical systems offer excellent isolation from the environment while solid state systems allow for integrated micro-fabricated devices. At the same time nuclear spins in molecules can remain decoupled from the environment even under rather harsh conditions, and this is the basis of NMR experiments. Given these distinct advantages it is very fruitful to investigate hybrid devices merging the advantages of each of the systems. To do this it is essential to develop quantum interfaces to connect the different systems. By their very nature such quantum interfaces exchange information with their environment and are therefore open quantum systems.
In this project I wish to establish a strong theoretical quantum optics group which can guide and inspire the experiments towards breaking new grounds for open quantum systems and making quantum interfaces between distinct physical systems. The objective is to develop concrete proposals for how to experimentally control and exploit the interaction of quantum systems with their surroundings and for how this can be used for quantum interfaces.
The work in this project is particularly relevant for applications in quantum information processing, where the current challenge is to take the field from proof-of-principle demonstrations to truly scalable devices. Such challenge demands new interdisciplinary theoretical ideas for hybrid devices. This proposal addresses several key challenges for quantum information processing: scalable multimode quantum repeaters based on hybrid approaches, entanglement enabled quantum metrology, photonic engineering based on surface plasmons, dissipative preparation of entangled states, and phonon engineering for quantum dots. In addition applications towards nuclear spin cooling to improve NMR experiments as well as ultra cold atoms will be explored."
Summary
"Researchers have strived to obtain control of a variety of different quantum systems, each characterized by their own distinct advantages: quantum optical systems offer excellent isolation from the environment while solid state systems allow for integrated micro-fabricated devices. At the same time nuclear spins in molecules can remain decoupled from the environment even under rather harsh conditions, and this is the basis of NMR experiments. Given these distinct advantages it is very fruitful to investigate hybrid devices merging the advantages of each of the systems. To do this it is essential to develop quantum interfaces to connect the different systems. By their very nature such quantum interfaces exchange information with their environment and are therefore open quantum systems.
In this project I wish to establish a strong theoretical quantum optics group which can guide and inspire the experiments towards breaking new grounds for open quantum systems and making quantum interfaces between distinct physical systems. The objective is to develop concrete proposals for how to experimentally control and exploit the interaction of quantum systems with their surroundings and for how this can be used for quantum interfaces.
The work in this project is particularly relevant for applications in quantum information processing, where the current challenge is to take the field from proof-of-principle demonstrations to truly scalable devices. Such challenge demands new interdisciplinary theoretical ideas for hybrid devices. This proposal addresses several key challenges for quantum information processing: scalable multimode quantum repeaters based on hybrid approaches, entanglement enabled quantum metrology, photonic engineering based on surface plasmons, dissipative preparation of entangled states, and phonon engineering for quantum dots. In addition applications towards nuclear spin cooling to improve NMR experiments as well as ultra cold atoms will be explored."
Max ERC Funding
1 431 542 €
Duration
Start date: 2012-10-01, End date: 2017-09-30