Project acronym 1st-principles-discs
Project A First Principles Approach to Accretion Discs
Researcher (PI) Martin Elias Pessah
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Summary
Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Max ERC Funding
1 793 697 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym ComplexiTE
Project An integrated multidisciplinary tissue engineering approach combining novel high-throughput screening and advanced methodologies to create complex biomaterials-stem cells constructs
Researcher (PI) Rui Luis Goncalves Dos Reis
Host Institution (HI) UNIVERSIDADE DO MINHO
Country Portugal
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary New developments on tissue engineering strategies should realize the complexity of tissue remodelling and the inter-dependency of many variables associated to stem cells and biomaterials interactions. ComplexiTE proposes an integrated approach to address such multiple factors in which different innovative methodologies are implemented, aiming at developing tissue-like substitutes with enhanced in vivo functionality. Several ground-breaking advances are expected to be achieved, including: i) improved methodologies for isolation and expansion of sub-populations of stem cells derived from not so explored sources such as adipose tissue and amniotic fluid; ii) radically new methods to monitor human stem cells behaviour in vivo; iii) new macromolecules isolated from renewable resources, especially from marine origin; iv) combinations of liquid volumes mingling biomaterials and distinct stem cells, generating hydrogel beads upon adequate cross-linking reactions; v) optimised culture of the produced beads in adequate 3D bioreactors and a novel selection method to sort the beads that show a (pre-defined) positive biological reading; vi) random 3D arrays validated by identifying the natural polymers and cells composing the positive beads; v) 2D arrays of selected hydrogel spots for brand new in vivo tests, in which each spot of the implanted chip may be evaluated within the living animal using adequate imaging methods; vi) new porous scaffolds of the best combinations formed by particles agglomeration or fiber-based rapid-prototyping. The ultimate goal of this proposal is to develop breakthrough research specifically focused on the above mentioned key issues and radically innovative approaches to produce and scale-up new tissue engineering strategies that are both industrially and clinically relevant, by mastering the inherent complexity associated to the correct selection among a great number of combinations of possible biomaterials, stem cells and culturing conditions.
Summary
New developments on tissue engineering strategies should realize the complexity of tissue remodelling and the inter-dependency of many variables associated to stem cells and biomaterials interactions. ComplexiTE proposes an integrated approach to address such multiple factors in which different innovative methodologies are implemented, aiming at developing tissue-like substitutes with enhanced in vivo functionality. Several ground-breaking advances are expected to be achieved, including: i) improved methodologies for isolation and expansion of sub-populations of stem cells derived from not so explored sources such as adipose tissue and amniotic fluid; ii) radically new methods to monitor human stem cells behaviour in vivo; iii) new macromolecules isolated from renewable resources, especially from marine origin; iv) combinations of liquid volumes mingling biomaterials and distinct stem cells, generating hydrogel beads upon adequate cross-linking reactions; v) optimised culture of the produced beads in adequate 3D bioreactors and a novel selection method to sort the beads that show a (pre-defined) positive biological reading; vi) random 3D arrays validated by identifying the natural polymers and cells composing the positive beads; v) 2D arrays of selected hydrogel spots for brand new in vivo tests, in which each spot of the implanted chip may be evaluated within the living animal using adequate imaging methods; vi) new porous scaffolds of the best combinations formed by particles agglomeration or fiber-based rapid-prototyping. The ultimate goal of this proposal is to develop breakthrough research specifically focused on the above mentioned key issues and radically innovative approaches to produce and scale-up new tissue engineering strategies that are both industrially and clinically relevant, by mastering the inherent complexity associated to the correct selection among a great number of combinations of possible biomaterials, stem cells and culturing conditions.
Max ERC Funding
2 320 000 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym HARMONY
Project "Harmonic identification, mitigation and control in power electronics based power systems"
Researcher (PI) Frede Blaabjerg
Host Institution (HI) AALBORG UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), PE7, ERC-2012-ADG_20120216
Summary "Global electrical energy consumption is still increasing which demands that power capacity and power transmission capabilities must be doubled within 20 years. Today 40 % of the global energy consumption is processed by electricity in 2040 this may be up to 70 %. Electrical power production is changing from conventional, fossil based sources to renewable power resources. Highly efficient and sustainable power electronics in power generation, power transmission/distribution and end-user applications are introduced to ensure more efficient use of electricity. Traditional centralized electricity production with unidirectional power flows in transmission and distribution system will be replaced by the operation and control of intelligent distribution systems which are much more based on power electronics systems and having bidirectional power flow. Such large scale expansion of power electronics usage will change the characteristic of the power system by introducing more harmonics from generation, from the efficient load systems all resulting in a larger risk of instability and more losses in the future power system. The projects goal is to obtain “Harmony” between the renewable energy sources, the future power system and the loads in order to keep stability at all levels seen from a harmonic point of view. The project establishes the necessary theories, models and methods to identify harmonic problems in a power electronic based power system, a theoretical and hardware platform to enable control of harmonics and mitigate them, and develops on-line methods to monitor the harmonic state of the power system. The outcomes are new tools for identifying stability problems in power electronics based power systems and new control methods for reducing the harmonic presence and reduce the overall instability risks. Further, new design methods for active and passive filters in renewable energy systems, in the power system and in the power electronics based loads will be developed"
Summary
"Global electrical energy consumption is still increasing which demands that power capacity and power transmission capabilities must be doubled within 20 years. Today 40 % of the global energy consumption is processed by electricity in 2040 this may be up to 70 %. Electrical power production is changing from conventional, fossil based sources to renewable power resources. Highly efficient and sustainable power electronics in power generation, power transmission/distribution and end-user applications are introduced to ensure more efficient use of electricity. Traditional centralized electricity production with unidirectional power flows in transmission and distribution system will be replaced by the operation and control of intelligent distribution systems which are much more based on power electronics systems and having bidirectional power flow. Such large scale expansion of power electronics usage will change the characteristic of the power system by introducing more harmonics from generation, from the efficient load systems all resulting in a larger risk of instability and more losses in the future power system. The projects goal is to obtain “Harmony” between the renewable energy sources, the future power system and the loads in order to keep stability at all levels seen from a harmonic point of view. The project establishes the necessary theories, models and methods to identify harmonic problems in a power electronic based power system, a theoretical and hardware platform to enable control of harmonics and mitigate them, and develops on-line methods to monitor the harmonic state of the power system. The outcomes are new tools for identifying stability problems in power electronics based power systems and new control methods for reducing the harmonic presence and reduce the overall instability risks. Further, new design methods for active and passive filters in renewable energy systems, in the power system and in the power electronics based loads will be developed"
Max ERC Funding
2 500 000 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym NanoTrigger
Project Triggerable nanomaterials to modulate cell activity
Researcher (PI) Lino Da Silva Ferreira
Host Institution (HI) CENTRO DE NEUROCIENCIAS E BIOLOGIACELULAR ASSOCIACAO
Country Portugal
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary The advent of molecular reprogramming and the associated opportunities for personalised and therapeutic medicine requires the development of novel systems for on-demand delivery of reprogramming factors into cells in order to modulate their activity/identity. Such triggerable systems should allow precise control of the timing, duration, magnitude and spatial release of the reprogramming factors. Furthermore, the system should allow this control even in vivo, using non-invasive means. The present project aims at developing triggerable systems able to release efficiently reprogramming factors on demand. The potential of this technology will be tested in two settings: (i) in the reprogramming of somatic cells in vitro, and (ii) in the improvement of hematopoietic stem cell engraftment in vivo, at the bone marrow. The proposed research involves a team formed by engineers, chemists, biologists and is highly multidisciplinary in nature encompassing elements of engineering, chemistry, system biology, stem cell technology and nanomedicine.
Summary
The advent of molecular reprogramming and the associated opportunities for personalised and therapeutic medicine requires the development of novel systems for on-demand delivery of reprogramming factors into cells in order to modulate their activity/identity. Such triggerable systems should allow precise control of the timing, duration, magnitude and spatial release of the reprogramming factors. Furthermore, the system should allow this control even in vivo, using non-invasive means. The present project aims at developing triggerable systems able to release efficiently reprogramming factors on demand. The potential of this technology will be tested in two settings: (i) in the reprogramming of somatic cells in vitro, and (ii) in the improvement of hematopoietic stem cell engraftment in vivo, at the bone marrow. The proposed research involves a team formed by engineers, chemists, biologists and is highly multidisciplinary in nature encompassing elements of engineering, chemistry, system biology, stem cell technology and nanomedicine.
Max ERC Funding
1 699 320 €
Duration
Start date: 2012-11-01, End date: 2017-10-31