Project acronym BIRTH
Project Births, mothers and babies: prehistoric fertility in the Balkans between 10000 – 5000 BC
Researcher (PI) Sofija Stefanovic
Host Institution (HI) BIOSENSE INSTITUTE - RESEARCH AND DEVELOPMENT INSTITUTE FOR INFORMATION TECHNOLOGIES IN BIOSYSTEMS
Country Serbia
Call Details Starting Grant (StG), SH6, ERC-2014-STG
Summary The BIRTH project will investigate the key biological and cultural mechanisms affecting fertility rates resulting the Neolithic Demogaphic Transition, the major demographic shift in human evolution. We integrate skeletal markers with micro-nutritional and macro-scaled cultural effects on fertility rates during the Early-Middle Holocene (10000-5000 BC) in the Central Balkans. Human, animal and plant remains, will be analysed using methods from bioarchaeological, forensic, chemical sciences in order to: 1) Investigate variability in the pattern of birth rates (number of pregnancies, interval(s) between them and the duration of the reproductive period) through histological analysis of irregularities in tooth cementum of women; 2) Determine paleoobstetric and neonatal body characteristics, health status and nutrition through analysis of skeletal remains; 3) Determine micronutritional changes during the Early-Middle Holocene through trace element (Zn, Ca and Fe) analysis; 4) Investigate the micro and macronutritional value of prehistoric foodstuffs, through an analysis of animal and plant remains and to compare the nutritional intake in relation to health and fertility; 5) Establish a chronology of the NDT in the Balkans by summed radiocarbon probability distributions; 6) Explore the possible role of culture in driving fertility increases, through analysis of community attitudes to birthing trough investigation of neonate graves and artifact connected to the birthing process. Given that the issues of health and fertility are of utmost importance in the present as they were in the past, the BIRTH project offers new understanding of biocultural mechanisms which led to fertility increase and novel approaches to ancient skeletal heritage, and emphasizes their great potential for modern humanity.
Summary
The BIRTH project will investigate the key biological and cultural mechanisms affecting fertility rates resulting the Neolithic Demogaphic Transition, the major demographic shift in human evolution. We integrate skeletal markers with micro-nutritional and macro-scaled cultural effects on fertility rates during the Early-Middle Holocene (10000-5000 BC) in the Central Balkans. Human, animal and plant remains, will be analysed using methods from bioarchaeological, forensic, chemical sciences in order to: 1) Investigate variability in the pattern of birth rates (number of pregnancies, interval(s) between them and the duration of the reproductive period) through histological analysis of irregularities in tooth cementum of women; 2) Determine paleoobstetric and neonatal body characteristics, health status and nutrition through analysis of skeletal remains; 3) Determine micronutritional changes during the Early-Middle Holocene through trace element (Zn, Ca and Fe) analysis; 4) Investigate the micro and macronutritional value of prehistoric foodstuffs, through an analysis of animal and plant remains and to compare the nutritional intake in relation to health and fertility; 5) Establish a chronology of the NDT in the Balkans by summed radiocarbon probability distributions; 6) Explore the possible role of culture in driving fertility increases, through analysis of community attitudes to birthing trough investigation of neonate graves and artifact connected to the birthing process. Given that the issues of health and fertility are of utmost importance in the present as they were in the past, the BIRTH project offers new understanding of biocultural mechanisms which led to fertility increase and novel approaches to ancient skeletal heritage, and emphasizes their great potential for modern humanity.
Max ERC Funding
1 714 880 €
Duration
Start date: 2015-10-01, End date: 2021-01-31
Project acronym Phosphoprocessors
Project Biological signal processing via multisite phosphorylation networks
Researcher (PI) Mart Loog
Host Institution (HI) TARTU ULIKOOL
Country Estonia
Call Details Consolidator Grant (CoG), LS1, ERC-2014-CoG
Summary Multisite phosphorylation of proteins is a powerful signal processing mechanism playing crucial roles in cell division and differentiation as well as in disease. Our goal in this application is to elucidate the molecular basis of this important mechanism. We recently demonstrated a novel phenomenon of multisite phosphorylation in cell cycle regulation. We showed that cyclin-dependent kinase (CDK)-dependent multisite phosphorylation of a crucial substrate is performed semiprocessively in the N-to-C terminal direction along the disordered protein. The process is controlled by key parameters including the distance between phosphorylation sites, the distribution of serines and threonines in sites, and the position of docking motifs. According to our model, linear patterns of phosphorylation networks along the disordered protein segments determine the net phosphorylation rate of the protein. This concept provides a new interpretation of CDK signal processing, and it can explain how the temporal order of cell cycle events is achieved. The goals of this study are: 1) We will seek proof of the model by rewiring the patterns of budding yeast Cdk1 multisite networks according to the rules we have identified, so to change the order of cell cycle events. Next, we will restore the order by alternative wiring of the same switches; 2) To apply the proposed model in the context of different kinases and complex substrate arrangements, we will study the Cdk1-dependent multisite phosphorylation of kinetochore components, to understand the phospho-regulation of kinetochore formation, microtubule attachment and error correction; 3) We will apply multisite phosphorylation to design circuits for synthetic biology. A toolbox of synthetic parts based on multisite phosphorylation would revolutionize the field since the fast time scales and wide combinatorial possibilities.
Summary
Multisite phosphorylation of proteins is a powerful signal processing mechanism playing crucial roles in cell division and differentiation as well as in disease. Our goal in this application is to elucidate the molecular basis of this important mechanism. We recently demonstrated a novel phenomenon of multisite phosphorylation in cell cycle regulation. We showed that cyclin-dependent kinase (CDK)-dependent multisite phosphorylation of a crucial substrate is performed semiprocessively in the N-to-C terminal direction along the disordered protein. The process is controlled by key parameters including the distance between phosphorylation sites, the distribution of serines and threonines in sites, and the position of docking motifs. According to our model, linear patterns of phosphorylation networks along the disordered protein segments determine the net phosphorylation rate of the protein. This concept provides a new interpretation of CDK signal processing, and it can explain how the temporal order of cell cycle events is achieved. The goals of this study are: 1) We will seek proof of the model by rewiring the patterns of budding yeast Cdk1 multisite networks according to the rules we have identified, so to change the order of cell cycle events. Next, we will restore the order by alternative wiring of the same switches; 2) To apply the proposed model in the context of different kinases and complex substrate arrangements, we will study the Cdk1-dependent multisite phosphorylation of kinetochore components, to understand the phospho-regulation of kinetochore formation, microtubule attachment and error correction; 3) We will apply multisite phosphorylation to design circuits for synthetic biology. A toolbox of synthetic parts based on multisite phosphorylation would revolutionize the field since the fast time scales and wide combinatorial possibilities.
Max ERC Funding
1 999 289 €
Duration
Start date: 2015-05-01, End date: 2020-10-31
Project acronym Sip-Vol+
Project Stress-Induced Plant Volatiles in Biosphere-Atmosphere System
Researcher (PI) uelo Niinemets
Host Institution (HI) EESTI MAAULIKOOL
Country Estonia
Call Details Advanced Grant (AdG), LS8, ERC-2012-ADG_20120314
Summary Vegetation forms a key interface between Earth surface and atmosphere. The important role of vegetation carbon, water and energy exchanges is well established, but the overall impact of plant trace gas (VOC) emission for large-scale Earth processes is poorly understood. Although it is widely accepted that VOCs play major roles in the formation of ozone, secondary organic aerosols (SOA) and cloud condensation nuclei (CNN) with potentially profound impacts on air quality and Earth radiative balance, the research has so far focused only on constitutive emissions from species considered “emitters”. However, differently from constitutive VOCs emitted only by certain species, all plant species can be triggered to emit induced VOCs under abiotic and biotic stress. So far, induced high-reactivity VOCs are not considered in global VOC budget, and thus, this proposal tests the key assumption that VOC emissions worldwide have been vastly underestimated. As global change is resulting in higher level of stress in Earth ecosystems, the relevance of induced emissions is further expected to gain in importance. The current project has the overall objective to evaluate the effect of plant-generated VOC emissions on air composition and environment under global change, with particular emphasis on the role of VOCs induced in response to environmental stress. The study first quantifies the VOC production vs. stress severity relationships across species with differing stress tolerance and advances and parameterizes the qualitative induced VOC model developed by PI. The novel quantitative model is further verified by flux measurements and scaled up to regional and global scales to assess the contribution of induced emissions to overall VOC budget, and study the feedbacks between stress, ozone, SOA and CNN formation and the Earth climate using an hierarchy of available models. This highly cross-disciplinary project is expected to result in key contributions in two research fields of major significance: plant stress tolerance from molecules to globe and the role of vegetation component in atmospheric reactivity and Earth climate. The first part of the study provides fundamental insight into the stress responsiveness of plants with differing tolerance to environmental limitations, extending “leaf economics spectrum”, a hotspot of current plant ecology research. The second part provides quantitative information on large-scale importance of plant VOCs in globally changing climates with major relevance for understanding the role of plants in the Earth’s large scale processes.
Summary
Vegetation forms a key interface between Earth surface and atmosphere. The important role of vegetation carbon, water and energy exchanges is well established, but the overall impact of plant trace gas (VOC) emission for large-scale Earth processes is poorly understood. Although it is widely accepted that VOCs play major roles in the formation of ozone, secondary organic aerosols (SOA) and cloud condensation nuclei (CNN) with potentially profound impacts on air quality and Earth radiative balance, the research has so far focused only on constitutive emissions from species considered “emitters”. However, differently from constitutive VOCs emitted only by certain species, all plant species can be triggered to emit induced VOCs under abiotic and biotic stress. So far, induced high-reactivity VOCs are not considered in global VOC budget, and thus, this proposal tests the key assumption that VOC emissions worldwide have been vastly underestimated. As global change is resulting in higher level of stress in Earth ecosystems, the relevance of induced emissions is further expected to gain in importance. The current project has the overall objective to evaluate the effect of plant-generated VOC emissions on air composition and environment under global change, with particular emphasis on the role of VOCs induced in response to environmental stress. The study first quantifies the VOC production vs. stress severity relationships across species with differing stress tolerance and advances and parameterizes the qualitative induced VOC model developed by PI. The novel quantitative model is further verified by flux measurements and scaled up to regional and global scales to assess the contribution of induced emissions to overall VOC budget, and study the feedbacks between stress, ozone, SOA and CNN formation and the Earth climate using an hierarchy of available models. This highly cross-disciplinary project is expected to result in key contributions in two research fields of major significance: plant stress tolerance from molecules to globe and the role of vegetation component in atmospheric reactivity and Earth climate. The first part of the study provides fundamental insight into the stress responsiveness of plants with differing tolerance to environmental limitations, extending “leaf economics spectrum”, a hotspot of current plant ecology research. The second part provides quantitative information on large-scale importance of plant VOCs in globally changing climates with major relevance for understanding the role of plants in the Earth’s large scale processes.
Max ERC Funding
2 259 366 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym TRANSLATING MEMORIES
Project Translating Memories: The Eastern European Past in the Global Arena
Researcher (PI) Eneken Laanes
Host Institution (HI) TALLINN UNIVERSITY
Country Estonia
Call Details Starting Grant (StG), SH5, ERC-2019-STG
Summary The proposed project offers a new understanding of transnational memory as a process of translation by focusing on post-Soviet Eastern European attempts to make their local histories of the Second World War and the Socialist regime known globally. It examines these efforts through aesthetic media of memory – literature, film and art – that circulate globally and bring local experiences to global audiences and through the heated public debates that these works of art have provoked in different national and transnational contexts. It argues that the recently reinforced comparative and competitive political discourses about twentieth-century totalitarianisms in Eastern Europe can only be understood by exploring the arts that have developed more productive comparative and translational approaches and can therefore help to untangle the most recalcitrant nodes of confrontational political discourses and addressing the ethical and political complexity of remembering war and state terror. The project innovates methodologically by bringing together transcultural memory studies, translation theory and world literature studies to offer translation as a new model for conceptualising the transnational travel of memories that operates through transcultural memorial forms. What memorial forms have been used to make Eastern European memories intelligible in the global arena? What is gained and what is lost in this translation? What can the different ways that aesthetic acts of memory are received nationally and transnationally tell us about the frictions between these scales of memory and within the national itself? How has the globalisation of memory practices reinforced national memory in Eastern Europe? In providing the answers to these questions the project offers a transnational view of Eastern European attempts to negotiate their entangled histories of twentieth-century totalitarianisms within the global framework.
Summary
The proposed project offers a new understanding of transnational memory as a process of translation by focusing on post-Soviet Eastern European attempts to make their local histories of the Second World War and the Socialist regime known globally. It examines these efforts through aesthetic media of memory – literature, film and art – that circulate globally and bring local experiences to global audiences and through the heated public debates that these works of art have provoked in different national and transnational contexts. It argues that the recently reinforced comparative and competitive political discourses about twentieth-century totalitarianisms in Eastern Europe can only be understood by exploring the arts that have developed more productive comparative and translational approaches and can therefore help to untangle the most recalcitrant nodes of confrontational political discourses and addressing the ethical and political complexity of remembering war and state terror. The project innovates methodologically by bringing together transcultural memory studies, translation theory and world literature studies to offer translation as a new model for conceptualising the transnational travel of memories that operates through transcultural memorial forms. What memorial forms have been used to make Eastern European memories intelligible in the global arena? What is gained and what is lost in this translation? What can the different ways that aesthetic acts of memory are received nationally and transnationally tell us about the frictions between these scales of memory and within the national itself? How has the globalisation of memory practices reinforced national memory in Eastern Europe? In providing the answers to these questions the project offers a transnational view of Eastern European attempts to negotiate their entangled histories of twentieth-century totalitarianisms within the global framework.
Max ERC Funding
1 500 000 €
Duration
Start date: 2020-01-01, End date: 2024-12-31