Project acronym ADAM
Project The Adaptive Auditory Mind
Researcher (PI) Shihab Shamma
Host Institution (HI) ECOLE NORMALE SUPERIEURE
Country France
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary Listening in realistic situations is an active process that engages perceptual and cognitive faculties, endowing speech with meaning, music with joy, and environmental sounds with emotion. Through hearing, humans and other animals navigate complex acoustic scenes, separate sound mixtures, and assess their behavioral relevance. These remarkable feats are currently beyond our understanding and exceed the capabilities of the most sophisticated audio engineering systems. The goal of the proposed research is to investigate experimentally a novel view of hearing, where active hearing emerges from a deep interplay between adaptive sensory processes and goal-directed cognition. Specifically, we shall explore the postulate that versatile perception is mediated by rapid-plasticity at the neuronal level. At the conjunction of sensory and cognitive processing, rapid-plasticity pervades all levels of auditory system, from the cochlea up to the auditory and prefrontal cortices. Exploiting fundamental statistical regularities of acoustics, it is what allows humans and other animal to deal so successfully with natural acoustic scenes where artificial systems fail. The project builds on the internationally recognized leadership of the PI in the fields of physiology and computational modeling, combined with the expertise of the Co-Investigator in psychophysics. Building on these highly complementary fields and several technical innovations, we hope to promote a novel view of auditory perception and cognition. We aim also to contribute significantly to translational research in the domain of signal processing for clinical hearing aids, given that many current limitations are not technological but rather conceptual. The project will finally result in the creation of laboratory facilities and an intellectual network unique in France and rare in all of Europe, combining cognitive, neural, and computational approaches to auditory neuroscience.
Summary
Listening in realistic situations is an active process that engages perceptual and cognitive faculties, endowing speech with meaning, music with joy, and environmental sounds with emotion. Through hearing, humans and other animals navigate complex acoustic scenes, separate sound mixtures, and assess their behavioral relevance. These remarkable feats are currently beyond our understanding and exceed the capabilities of the most sophisticated audio engineering systems. The goal of the proposed research is to investigate experimentally a novel view of hearing, where active hearing emerges from a deep interplay between adaptive sensory processes and goal-directed cognition. Specifically, we shall explore the postulate that versatile perception is mediated by rapid-plasticity at the neuronal level. At the conjunction of sensory and cognitive processing, rapid-plasticity pervades all levels of auditory system, from the cochlea up to the auditory and prefrontal cortices. Exploiting fundamental statistical regularities of acoustics, it is what allows humans and other animal to deal so successfully with natural acoustic scenes where artificial systems fail. The project builds on the internationally recognized leadership of the PI in the fields of physiology and computational modeling, combined with the expertise of the Co-Investigator in psychophysics. Building on these highly complementary fields and several technical innovations, we hope to promote a novel view of auditory perception and cognition. We aim also to contribute significantly to translational research in the domain of signal processing for clinical hearing aids, given that many current limitations are not technological but rather conceptual. The project will finally result in the creation of laboratory facilities and an intellectual network unique in France and rare in all of Europe, combining cognitive, neural, and computational approaches to auditory neuroscience.
Max ERC Funding
3 199 078 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym ADEQUATE
Project Advanced optoelectronic Devices with Enhanced QUAntum efficiency at THz frEquencies
Researcher (PI) Carlo Sirtori
Host Institution (HI) UNIVERSITE PARIS DIDEROT - PARIS 7
Country France
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Summary
The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Max ERC Funding
1 761 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym BodyCapital
Project The healthy self as body capital: Individuals, market-based societies and body politics in visual twentieth century Europe.
Researcher (PI) Christian Bonah
Host Institution (HI) UNIVERSITE DE STRASBOURG
Country France
Call Details Advanced Grant (AdG), SH6, ERC-2015-AdG
Summary From testicular grafting (1920s) to step counting watches (2014), the perceptions and practices of health seeking individuals have been marked by continuities and profound changes during a twentieth century largely shaped by the advent of a communication society. Visuals can be a source to understand transformations by postulating an interactive, performative power of mass media in societies. Which roles did visuals play in changes from public health and human capital collective understandings of the healthy self to new (sometimes debated) perceptions and practices of our bodies as forms of individual capital in an increasing market-economized world?
Pursuing these questions, the project focuses on four fields of investigation -food/nutrition; movement/exercise/sports; sexuality/reproduction/infants and dependency/addiction/overconsumption- in Germany, France and Great Britain studied with an entangled history framework.
Within this scope the project aims at understanding (1)how visuals shape our health related self-understandings and practices in a continuity/discontinuity from the bio-political to the bio-economic logic. (2) The project will explore and explain how and why understandings of body capital differ or overlap in European countries. (3) The project will analyse if and how visual media serve as a promotion-communication hyphen for twentieth century preventive-self understanding.
With a visual perspective on a long twentieth century, the project seeks to better understand changes and continuities in the history of health intertwined with the history of media. This will provide new insights into how the internalization of bodycapital has evolved throughout the past century, how transformations in the media world (from film to TV to internet) play out at the individual level and how health challenges and cultural differences in body perceptions and practices persist in producing social distinction in an age of global information and advanced health systems.
Summary
From testicular grafting (1920s) to step counting watches (2014), the perceptions and practices of health seeking individuals have been marked by continuities and profound changes during a twentieth century largely shaped by the advent of a communication society. Visuals can be a source to understand transformations by postulating an interactive, performative power of mass media in societies. Which roles did visuals play in changes from public health and human capital collective understandings of the healthy self to new (sometimes debated) perceptions and practices of our bodies as forms of individual capital in an increasing market-economized world?
Pursuing these questions, the project focuses on four fields of investigation -food/nutrition; movement/exercise/sports; sexuality/reproduction/infants and dependency/addiction/overconsumption- in Germany, France and Great Britain studied with an entangled history framework.
Within this scope the project aims at understanding (1)how visuals shape our health related self-understandings and practices in a continuity/discontinuity from the bio-political to the bio-economic logic. (2) The project will explore and explain how and why understandings of body capital differ or overlap in European countries. (3) The project will analyse if and how visual media serve as a promotion-communication hyphen for twentieth century preventive-self understanding.
With a visual perspective on a long twentieth century, the project seeks to better understand changes and continuities in the history of health intertwined with the history of media. This will provide new insights into how the internalization of bodycapital has evolved throughout the past century, how transformations in the media world (from film to TV to internet) play out at the individual level and how health challenges and cultural differences in body perceptions and practices persist in producing social distinction in an age of global information and advanced health systems.
Max ERC Funding
2 492 124 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BOOTPHON
Project A computational approach to early language bootstrapping
Researcher (PI) Emmanuel Dupoux
Host Institution (HI) ECOLE DES HAUTES ETUDES EN SCIENCES SOCIALES
Country France
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary "During their first year of life, infants become attuned to the phonemes, words and phonological rules of their language, with little or no adult supervision. After 30 years of accumulated experimental results, we are still lacking an account for the puzzling fact that these 3 interdependent components of language are acquired not sequentially, but in parallel. Drawing tools from Machine Learning and Automatic Speech Recognition, we construct a model of this early process, test it on 2 large spontaneous speech databases (Japanese, French and Dutch) and test its predictions in infants using behavioral, EEGs and fNIRS techniques.
1. Coding. We study different ways of defining coding features for speech, from fine-grained to coarse grained, in view of the automatic discovery of a hierarchy of linguistic units. We compare this with a systematic study of the units of speech coding as they unfold in 6, 9 and 12 month old infants..
2. Lexicon. Infants recognize some words before they know the phonemes of their language; we modify existing word segmentation algorithms so they can work on raw speech. We test the unique prediction that infants start with a large lexicon that’s quite different from the adult one.
3. Rules. Phonemes are produced as overlapping, coarticulated gestures. To untangle these context effects, we use a predictive model of coarticulation in auditory space and invert it. We test when and how infants perform reverse coarticulation.
4. Integration. The above subprojects provide only an initial bootstrapping into approximate phonemes, words, and contextual rules. We show how to iteratively integrate these approximate representations to derive better ones. The outcome will be numerically assessed on an adult directed and infant directed speech database, and compared to those of to state-of-the-art supervized phoneme recognizers. The predictions will be tested in infants learning artificial languages and in a longitudinal study."
Summary
"During their first year of life, infants become attuned to the phonemes, words and phonological rules of their language, with little or no adult supervision. After 30 years of accumulated experimental results, we are still lacking an account for the puzzling fact that these 3 interdependent components of language are acquired not sequentially, but in parallel. Drawing tools from Machine Learning and Automatic Speech Recognition, we construct a model of this early process, test it on 2 large spontaneous speech databases (Japanese, French and Dutch) and test its predictions in infants using behavioral, EEGs and fNIRS techniques.
1. Coding. We study different ways of defining coding features for speech, from fine-grained to coarse grained, in view of the automatic discovery of a hierarchy of linguistic units. We compare this with a systematic study of the units of speech coding as they unfold in 6, 9 and 12 month old infants..
2. Lexicon. Infants recognize some words before they know the phonemes of their language; we modify existing word segmentation algorithms so they can work on raw speech. We test the unique prediction that infants start with a large lexicon that’s quite different from the adult one.
3. Rules. Phonemes are produced as overlapping, coarticulated gestures. To untangle these context effects, we use a predictive model of coarticulation in auditory space and invert it. We test when and how infants perform reverse coarticulation.
4. Integration. The above subprojects provide only an initial bootstrapping into approximate phonemes, words, and contextual rules. We show how to iteratively integrate these approximate representations to derive better ones. The outcome will be numerically assessed on an adult directed and infant directed speech database, and compared to those of to state-of-the-art supervized phoneme recognizers. The predictions will be tested in infants learning artificial languages and in a longitudinal study."
Max ERC Funding
2 194 557 €
Duration
Start date: 2012-11-01, End date: 2017-10-31
Project acronym BreakingBarriers
Project Targeting endothelial barriers to combat disease
Researcher (PI) Anne Eichmann
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Country France
Call Details Advanced Grant (AdG), LS4, ERC-2018-ADG
Summary Tissue homeostasis requires coordinated barrier function in blood and lymphatic vessels. Opening of junctions between endothelial cells (ECs) lining blood vessels leads to tissue fluid accumulation that is drained by lymphatic vessels. A pathological increase in blood vessel permeability or lack or malfunction of lymphatic vessels leads to edema and associated defects in macromolecule and immune cell clearance. Unbalanced barrier function between blood and lymphatic vessels contributes to neurodegeneration, chronic inflammation, and cardiovascular disease. In this proposal, we seek to gain mechanistic understanding into coordination of barrier function between blood and lymphatic vessels, how this process is altered in disease models and how it can be manipulated for therapeutic purposes. We will focus on two critical barriers with diametrically opposing functions, the blood-brain barrier (BBB) and the lymphatic capillary barrier (LCB). ECs of the BBB form very tight junctions that restrict paracellular access to the brain. In contrast, open junctions of the LCB ensure uptake of extravasated fluid, macromolecules and immune cells, as well as lipid in the gut. We have identified novel effectors of BBB and LCB junctions and will determine their role in adult homeostasis and in disease models. Mouse genetic gain and loss of function approaches in combination with histological, ultrastructural, functional and molecular analysis will determine mechanisms underlying formation of tissue specific EC barriers. Deliverables include in vivo validated targets that could be used for i) opening the BBB on demand for drug delivery into the brain, and ii) to lower plasma lipid uptake via interfering with the LCB, with implications for prevention of obesity, cardiovascular disease and inflammation. These pioneering studies promise to open up new opportunities for research and treatment of neurovascular and cardiovascular disease.
Summary
Tissue homeostasis requires coordinated barrier function in blood and lymphatic vessels. Opening of junctions between endothelial cells (ECs) lining blood vessels leads to tissue fluid accumulation that is drained by lymphatic vessels. A pathological increase in blood vessel permeability or lack or malfunction of lymphatic vessels leads to edema and associated defects in macromolecule and immune cell clearance. Unbalanced barrier function between blood and lymphatic vessels contributes to neurodegeneration, chronic inflammation, and cardiovascular disease. In this proposal, we seek to gain mechanistic understanding into coordination of barrier function between blood and lymphatic vessels, how this process is altered in disease models and how it can be manipulated for therapeutic purposes. We will focus on two critical barriers with diametrically opposing functions, the blood-brain barrier (BBB) and the lymphatic capillary barrier (LCB). ECs of the BBB form very tight junctions that restrict paracellular access to the brain. In contrast, open junctions of the LCB ensure uptake of extravasated fluid, macromolecules and immune cells, as well as lipid in the gut. We have identified novel effectors of BBB and LCB junctions and will determine their role in adult homeostasis and in disease models. Mouse genetic gain and loss of function approaches in combination with histological, ultrastructural, functional and molecular analysis will determine mechanisms underlying formation of tissue specific EC barriers. Deliverables include in vivo validated targets that could be used for i) opening the BBB on demand for drug delivery into the brain, and ii) to lower plasma lipid uptake via interfering with the LCB, with implications for prevention of obesity, cardiovascular disease and inflammation. These pioneering studies promise to open up new opportunities for research and treatment of neurovascular and cardiovascular disease.
Max ERC Funding
2 499 969 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym CCC
Project Context, Content, and Compositionality
Researcher (PI) Francois Recanati
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Advanced Grant (AdG), SH4, ERC-2008-AdG
Summary Over the past fifteen years, I have argued that the effects of context on content go well beyond what is standardly acknowledged in semantics. This view is sometimes referred to as Contextualism or (more technically) Truth-Conditional Pragmatics (TCP). The key idea is that the effects of context on content need not be traceable to the linguistic material in the uttered sentence. Some effects are due to the linguistic material (e.g. to context-sensitive words or morphemes which trigger the search for contextual values), but others result from top-down or free pragmatic processes that take place not because the linguistic material demands it, but because the literal meaning of the sentence requires adjustment or elaboration ( modulation ) in order to determine a contextually admissible content for the speaker s utterance. In the literature, one often finds arguments to the effect that, if Contextualism is right, then systematic semantics becomes impossible. More precisely, the claim that is often made is that TCP is incompatible with the Principle of Compositionality, upon which any systematic semantics must be based. The aim of this project is to defend Contextualism/TCP by demonstrating that it is not incompatible with the project of constructing a systematic, compositional semantics for natural language. This demonstration is of importance given the current predicament in the philosophy of language. We are, as it were, caught in a dilemma : formal semanticists provide compelling arguments that natural language must be compositional, but contextualists offer no less compelling arguments to the effect that « sense modulation is essential to speech, because we use a (mor or less) fixed stock of lexemes to talk about an indefinite variety of things, situations, and experiences » (Recanati 2004 : 131). What are we to do, if modulation is incompatible with compositionality? Our aim is to show that it is not, and thereby to dissolve the alleged dilemma.
Summary
Over the past fifteen years, I have argued that the effects of context on content go well beyond what is standardly acknowledged in semantics. This view is sometimes referred to as Contextualism or (more technically) Truth-Conditional Pragmatics (TCP). The key idea is that the effects of context on content need not be traceable to the linguistic material in the uttered sentence. Some effects are due to the linguistic material (e.g. to context-sensitive words or morphemes which trigger the search for contextual values), but others result from top-down or free pragmatic processes that take place not because the linguistic material demands it, but because the literal meaning of the sentence requires adjustment or elaboration ( modulation ) in order to determine a contextually admissible content for the speaker s utterance. In the literature, one often finds arguments to the effect that, if Contextualism is right, then systematic semantics becomes impossible. More precisely, the claim that is often made is that TCP is incompatible with the Principle of Compositionality, upon which any systematic semantics must be based. The aim of this project is to defend Contextualism/TCP by demonstrating that it is not incompatible with the project of constructing a systematic, compositional semantics for natural language. This demonstration is of importance given the current predicament in the philosophy of language. We are, as it were, caught in a dilemma : formal semanticists provide compelling arguments that natural language must be compositional, but contextualists offer no less compelling arguments to the effect that « sense modulation is essential to speech, because we use a (mor or less) fixed stock of lexemes to talk about an indefinite variety of things, situations, and experiences » (Recanati 2004 : 131). What are we to do, if modulation is incompatible with compositionality? Our aim is to show that it is not, and thereby to dissolve the alleged dilemma.
Max ERC Funding
1 144 706 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym CELLO
Project From Cells to Organs on Chips: Development of an Integrative Microfluidic Platform
Researcher (PI) Jean-Louis Viovy
Host Institution (HI) INSTITUT CURIE
Country France
Call Details Advanced Grant (AdG), PE3, ERC-2012-ADG_20120216
Summary We shall develop a microfluidic and microsystems toolbox allowing the construction and study of complex cellular assemblies (“tissue or organ mimics on chip”), in a highly controlled and parallelized way. This platform will allow the selection of specific cells from one or several populations, their deterministic positioning and/or connection relative to each other, yielding functional assemblies with a degree of complexity, determinism and physiological realism unavailable to current in vitro systems We shall in particular develop “semi-3D” architectures, reproducing the local 3D arrangement of tissues, but presenting at mesoscale a planar and periodic arrangement facilitating high resolution stimulation and recording. This will provide biologists and clinicians with new experimental models able to bridge the gap between current in vitro systems, in which cells can be observed in parallel at high resolution, but lack the highly ordered architecture present in living systems, and in vivo models, in which observation and stimulation means are more limited. This development will follow a functional approach, and gather competences and concepts from micr-nano-systems, surface science, hydrodynamics, soft matter and biology. We shall validate it on three specific applications, the sorting and study of circulating tumour cells for understanding metastases, the creation of “miniguts”, artificial intestinal tissue, for applications in developmental biology and cancerogenesis, and the in vitro construction of active and connected neuron arrays, for studying the molecular mechanisms of Alzheimer, and signal processing by neuron networks. This platform will also open new routes for drug testing, replacing animal models and reducing the health and economic risk of clinical tests, developmental biology , stem cells research. and regenerative medicine.
Summary
We shall develop a microfluidic and microsystems toolbox allowing the construction and study of complex cellular assemblies (“tissue or organ mimics on chip”), in a highly controlled and parallelized way. This platform will allow the selection of specific cells from one or several populations, their deterministic positioning and/or connection relative to each other, yielding functional assemblies with a degree of complexity, determinism and physiological realism unavailable to current in vitro systems We shall in particular develop “semi-3D” architectures, reproducing the local 3D arrangement of tissues, but presenting at mesoscale a planar and periodic arrangement facilitating high resolution stimulation and recording. This will provide biologists and clinicians with new experimental models able to bridge the gap between current in vitro systems, in which cells can be observed in parallel at high resolution, but lack the highly ordered architecture present in living systems, and in vivo models, in which observation and stimulation means are more limited. This development will follow a functional approach, and gather competences and concepts from micr-nano-systems, surface science, hydrodynamics, soft matter and biology. We shall validate it on three specific applications, the sorting and study of circulating tumour cells for understanding metastases, the creation of “miniguts”, artificial intestinal tissue, for applications in developmental biology and cancerogenesis, and the in vitro construction of active and connected neuron arrays, for studying the molecular mechanisms of Alzheimer, and signal processing by neuron networks. This platform will also open new routes for drug testing, replacing animal models and reducing the health and economic risk of clinical tests, developmental biology , stem cells research. and regenerative medicine.
Max ERC Funding
2 260 000 €
Duration
Start date: 2013-07-01, End date: 2018-06-30
Project acronym CHAMPAGNE
Project Charge orders, Magnetism and Pairings in High Temperature Superconductors
Researcher (PI) Catherine, Marie, Elisabeth PEPIN
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Country France
Call Details Advanced Grant (AdG), PE3, ERC-2015-AdG
Summary For nearly thirty years, the search for a room-temperature superconductor has focused on exotic materials known as cuprates, obtained by doping a parent Mott insulator, and which can carry currents without losing energy as heat at temperatures up to 164 Kelvin. Conventionally three main players were identified as being crucial i) the Mott insulating phase, ii) the anti-ferromagnetic order and iii) the superconducting (SC) phase. Recently a body of experimental probes suggested the presence of a fourth forgotten player, charge ordering-, as a direct competitor for superconductivity. In this project we propose that the relationship between charge ordering and superconductivity is more intimate than previously thought and is protected by an emerging SU(2) symmetry relating the two. The beauty of our theory resides in that it can be encapsulated in one simple and universal “gap equation”, which in contrast to strong coupling approaches used up to now, can easily be connected to experiments. In the first part of this work, we will refine the theoretical model in order to shape it for comparison with experiments and consistently test the SU(2) symmetry. In the second part of the work, we will search for the experimental signatures of our theory through a back and forth interaction with experimental groups. We expect our theory to generate new insights and experimental developments, and to lead to a major breakthrough if it correctly explains the origin of anomalous superconductivity in these materials.
Summary
For nearly thirty years, the search for a room-temperature superconductor has focused on exotic materials known as cuprates, obtained by doping a parent Mott insulator, and which can carry currents without losing energy as heat at temperatures up to 164 Kelvin. Conventionally three main players were identified as being crucial i) the Mott insulating phase, ii) the anti-ferromagnetic order and iii) the superconducting (SC) phase. Recently a body of experimental probes suggested the presence of a fourth forgotten player, charge ordering-, as a direct competitor for superconductivity. In this project we propose that the relationship between charge ordering and superconductivity is more intimate than previously thought and is protected by an emerging SU(2) symmetry relating the two. The beauty of our theory resides in that it can be encapsulated in one simple and universal “gap equation”, which in contrast to strong coupling approaches used up to now, can easily be connected to experiments. In the first part of this work, we will refine the theoretical model in order to shape it for comparison with experiments and consistently test the SU(2) symmetry. In the second part of the work, we will search for the experimental signatures of our theory through a back and forth interaction with experimental groups. We expect our theory to generate new insights and experimental developments, and to lead to a major breakthrough if it correctly explains the origin of anomalous superconductivity in these materials.
Max ERC Funding
1 318 145 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym ChloroMito
Project Chloroplast and Mitochondria interactions for microalgal acclimation
Researcher (PI) Giovanni Finazzi
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Advanced Grant (AdG), LS8, ERC-2018-ADG
Summary Photosynthesis emerged as an energy-harvesting process at least 3.5 billion years ago, first in anoxygenic bacteria and then in oxygen-producing organisms, which led to the evolution of complex life forms with oxygen-based metabolisms (e.g. humans). Oxygenic photosynthesis produces ATP and NADPH, and the correct balance between these energy-rich molecules allows assimilation of CO2 into organic matter. Although the mechanisms of ATP/NADPH synthesis are well understood, less is known about how CO2 assimilation was optimised. This process was essential to the successful phototrophic colonisation of land (by Plantae) and the oceans (by phytoplankton). Plants optimised CO2 assimilation using chloroplast-localised ATP-generating processes to control the ATP/NADPH ratio, but the strategies developed by phytoplankton are poorly understood. However, diatoms—ecologically successful ocean organisms—are known to control this ratio by exchanging energy between plastids and mitochondria. Is this mechanism a paradigm for optimisation of photosynthesis in the ocean? The ChloroMito project aims to first decipher the mechanism(s) behind plastid-mitochondria interactions. Thanks to a novel combination of whole-cell approaches, including (opto)genetics, cellular tomography and single-cell spectroscopy, we will identify the nature of the exchanges occurring in diatoms and assess their contribution to dynamic responses to environmental stimuli (light, temperature, nutrients). We will then assess conservation of this mechanism in ecologically relevant phytoplankton taxa, test its role in supporting different lifestyles (autotrophy, mixotrophy, photosymbiosis) encountered in the ocean, and track transitions between these different lifestyles as part of an unprecedented effort to visualise ocean dynamics. Overall, the ChloroMito project will alter our understanding of ocean photosynthesis, challenging textbook concepts which are often inferred from plant-based concepts
Summary
Photosynthesis emerged as an energy-harvesting process at least 3.5 billion years ago, first in anoxygenic bacteria and then in oxygen-producing organisms, which led to the evolution of complex life forms with oxygen-based metabolisms (e.g. humans). Oxygenic photosynthesis produces ATP and NADPH, and the correct balance between these energy-rich molecules allows assimilation of CO2 into organic matter. Although the mechanisms of ATP/NADPH synthesis are well understood, less is known about how CO2 assimilation was optimised. This process was essential to the successful phototrophic colonisation of land (by Plantae) and the oceans (by phytoplankton). Plants optimised CO2 assimilation using chloroplast-localised ATP-generating processes to control the ATP/NADPH ratio, but the strategies developed by phytoplankton are poorly understood. However, diatoms—ecologically successful ocean organisms—are known to control this ratio by exchanging energy between plastids and mitochondria. Is this mechanism a paradigm for optimisation of photosynthesis in the ocean? The ChloroMito project aims to first decipher the mechanism(s) behind plastid-mitochondria interactions. Thanks to a novel combination of whole-cell approaches, including (opto)genetics, cellular tomography and single-cell spectroscopy, we will identify the nature of the exchanges occurring in diatoms and assess their contribution to dynamic responses to environmental stimuli (light, temperature, nutrients). We will then assess conservation of this mechanism in ecologically relevant phytoplankton taxa, test its role in supporting different lifestyles (autotrophy, mixotrophy, photosymbiosis) encountered in the ocean, and track transitions between these different lifestyles as part of an unprecedented effort to visualise ocean dynamics. Overall, the ChloroMito project will alter our understanding of ocean photosynthesis, challenging textbook concepts which are often inferred from plant-based concepts
Max ERC Funding
2 498 207 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym COGNITION
Project Cognition and Decision-Making: Laws, Norms and Contracts
Researcher (PI) Jean Tirole
Host Institution (HI) FONDATION JEAN JACQUES LAFFONT,TOULOUSE SCIENCES ECONOMIQUES
Country France
Call Details Advanced Grant (AdG), SH1, ERC-2009-AdG
Summary The application's unifying theme is cognition. Any decision reflects the information that comes to the decision-maker's awareness at the moment of making the decision. In turn, this information is the stochastic outcome of a sequence of more or less conscious choices and of awareness manipulation by third parties. The three parts of this application all are concerned with two factors of limited awareness (cognitive costs and motivated beliefs) and with the application of imperfect cognition to economics. The various projects can be subsumed into three themes, each with different subprojects: 1. Self-serving beliefs, laws, norms and taboos (expressive function of the law, taboos, dignity and contracts). 2. Cognition, markets, and contracts (mechanism design under costly cognition, directing attention in markets and politics). 3. Cognition and individual decision-making (foundations of some non-standard preferences). The methodology for this research will be that of formal economic modeling and welfare analysis, enriched with important insights from psychology and sociology. It will also include experimental (laboratory) investigations. The output will first take the form of a series of articles in economics journals, as well as, for the research described in Part 1, a book to disseminate the research to broader, multidisciplinary and non-specialized audiences.
Summary
The application's unifying theme is cognition. Any decision reflects the information that comes to the decision-maker's awareness at the moment of making the decision. In turn, this information is the stochastic outcome of a sequence of more or less conscious choices and of awareness manipulation by third parties. The three parts of this application all are concerned with two factors of limited awareness (cognitive costs and motivated beliefs) and with the application of imperfect cognition to economics. The various projects can be subsumed into three themes, each with different subprojects: 1. Self-serving beliefs, laws, norms and taboos (expressive function of the law, taboos, dignity and contracts). 2. Cognition, markets, and contracts (mechanism design under costly cognition, directing attention in markets and politics). 3. Cognition and individual decision-making (foundations of some non-standard preferences). The methodology for this research will be that of formal economic modeling and welfare analysis, enriched with important insights from psychology and sociology. It will also include experimental (laboratory) investigations. The output will first take the form of a series of articles in economics journals, as well as, for the research described in Part 1, a book to disseminate the research to broader, multidisciplinary and non-specialized audiences.
Max ERC Funding
1 910 400 €
Duration
Start date: 2010-04-01, End date: 2016-03-31