Project acronym 3D-BioMat
Project Deciphering biomineralization mechanisms through 3D explorations of mesoscale crystalline structure in calcareous biomaterials
Researcher (PI) VIRGINIE CHAMARD
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Summary
The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Max ERC Funding
1 966 429 €
Duration
Start date: 2017-03-01, End date: 2022-08-31
Project acronym ADAM
Project The Adaptive Auditory Mind
Researcher (PI) Shihab Shamma
Host Institution (HI) ECOLE NORMALE SUPERIEURE
Country France
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary Listening in realistic situations is an active process that engages perceptual and cognitive faculties, endowing speech with meaning, music with joy, and environmental sounds with emotion. Through hearing, humans and other animals navigate complex acoustic scenes, separate sound mixtures, and assess their behavioral relevance. These remarkable feats are currently beyond our understanding and exceed the capabilities of the most sophisticated audio engineering systems. The goal of the proposed research is to investigate experimentally a novel view of hearing, where active hearing emerges from a deep interplay between adaptive sensory processes and goal-directed cognition. Specifically, we shall explore the postulate that versatile perception is mediated by rapid-plasticity at the neuronal level. At the conjunction of sensory and cognitive processing, rapid-plasticity pervades all levels of auditory system, from the cochlea up to the auditory and prefrontal cortices. Exploiting fundamental statistical regularities of acoustics, it is what allows humans and other animal to deal so successfully with natural acoustic scenes where artificial systems fail. The project builds on the internationally recognized leadership of the PI in the fields of physiology and computational modeling, combined with the expertise of the Co-Investigator in psychophysics. Building on these highly complementary fields and several technical innovations, we hope to promote a novel view of auditory perception and cognition. We aim also to contribute significantly to translational research in the domain of signal processing for clinical hearing aids, given that many current limitations are not technological but rather conceptual. The project will finally result in the creation of laboratory facilities and an intellectual network unique in France and rare in all of Europe, combining cognitive, neural, and computational approaches to auditory neuroscience.
Summary
Listening in realistic situations is an active process that engages perceptual and cognitive faculties, endowing speech with meaning, music with joy, and environmental sounds with emotion. Through hearing, humans and other animals navigate complex acoustic scenes, separate sound mixtures, and assess their behavioral relevance. These remarkable feats are currently beyond our understanding and exceed the capabilities of the most sophisticated audio engineering systems. The goal of the proposed research is to investigate experimentally a novel view of hearing, where active hearing emerges from a deep interplay between adaptive sensory processes and goal-directed cognition. Specifically, we shall explore the postulate that versatile perception is mediated by rapid-plasticity at the neuronal level. At the conjunction of sensory and cognitive processing, rapid-plasticity pervades all levels of auditory system, from the cochlea up to the auditory and prefrontal cortices. Exploiting fundamental statistical regularities of acoustics, it is what allows humans and other animal to deal so successfully with natural acoustic scenes where artificial systems fail. The project builds on the internationally recognized leadership of the PI in the fields of physiology and computational modeling, combined with the expertise of the Co-Investigator in psychophysics. Building on these highly complementary fields and several technical innovations, we hope to promote a novel view of auditory perception and cognition. We aim also to contribute significantly to translational research in the domain of signal processing for clinical hearing aids, given that many current limitations are not technological but rather conceptual. The project will finally result in the creation of laboratory facilities and an intellectual network unique in France and rare in all of Europe, combining cognitive, neural, and computational approaches to auditory neuroscience.
Max ERC Funding
3 199 078 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym ADEQUATE
Project Advanced optoelectronic Devices with Enhanced QUAntum efficiency at THz frEquencies
Researcher (PI) Carlo Sirtori
Host Institution (HI) UNIVERSITE PARIS DIDEROT - PARIS 7
Country France
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Summary
The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Max ERC Funding
1 761 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym aLzINK
Project Alzheimer's disease and Zinc: the missing link ?
Researcher (PI) Christelle Sandrine Florence HUREAU-SABATER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), PE5, ERC-2014-STG
Summary Alzheimer's disease (AD) is one of the most serious diseases mankind is now facing as its social and economical impacts are increasing fastly. AD is very complex and the amyloid-β (Aβ) peptide as well as metallic ions (mainly copper and zinc) have been linked to its aetiology. While the deleterious impact of Cu is widely acknowledged, intervention of Zn is certain but still needs to be figured out.
The main objective of the present proposal, which is strongly anchored in the bio-inorganic chemistry field at interface with spectroscopy and biochemistry, is to design, synthesize and study new drug candidates (ligands L) capable of (i) targeting Cu(II) bound to Aβ within the synaptic cleft, where Zn is co-localized and ultimately to develop Zn-driven Cu(II) removal from Aβ and (ii) disrupting the aberrant Cu(II)-Aβ interactions involved in ROS production and Aβ aggregation, two deleterious events in AD. The drug candidates will thus have high Cu(II) over Zn selectively to preserve the crucial physiological role of Zn in the neurotransmission process. Zn is always underestimated (if not completely neglected) in current therapeutic approaches targeting Cu(II) despite the known interference of Zn with Cu(II) binding.
To reach this objective, it is absolutely necessary to first understand the metal ions trafficking issues in presence of Aβ alone at a molecular level (i.e. without the drug candidates).This includes: (i) determination of Zn binding site to Aβ, impact on Aβ aggregation and cell toxicity, (ii) determination of the mutual influence of Zn and Cu to their coordination to Aβ, impact on Aβ aggregation, ROS production and cell toxicity.
Methods used will span from organic synthesis to studies of neuronal model cells, with a major contribution of a wide panel of spectroscopic techniques including NMR, EPR, mass spectrometry, fluorescence, UV-Vis, circular-dichroism, X-ray absorption spectroscopy...
Summary
Alzheimer's disease (AD) is one of the most serious diseases mankind is now facing as its social and economical impacts are increasing fastly. AD is very complex and the amyloid-β (Aβ) peptide as well as metallic ions (mainly copper and zinc) have been linked to its aetiology. While the deleterious impact of Cu is widely acknowledged, intervention of Zn is certain but still needs to be figured out.
The main objective of the present proposal, which is strongly anchored in the bio-inorganic chemistry field at interface with spectroscopy and biochemistry, is to design, synthesize and study new drug candidates (ligands L) capable of (i) targeting Cu(II) bound to Aβ within the synaptic cleft, where Zn is co-localized and ultimately to develop Zn-driven Cu(II) removal from Aβ and (ii) disrupting the aberrant Cu(II)-Aβ interactions involved in ROS production and Aβ aggregation, two deleterious events in AD. The drug candidates will thus have high Cu(II) over Zn selectively to preserve the crucial physiological role of Zn in the neurotransmission process. Zn is always underestimated (if not completely neglected) in current therapeutic approaches targeting Cu(II) despite the known interference of Zn with Cu(II) binding.
To reach this objective, it is absolutely necessary to first understand the metal ions trafficking issues in presence of Aβ alone at a molecular level (i.e. without the drug candidates).This includes: (i) determination of Zn binding site to Aβ, impact on Aβ aggregation and cell toxicity, (ii) determination of the mutual influence of Zn and Cu to their coordination to Aβ, impact on Aβ aggregation, ROS production and cell toxicity.
Methods used will span from organic synthesis to studies of neuronal model cells, with a major contribution of a wide panel of spectroscopic techniques including NMR, EPR, mass spectrometry, fluorescence, UV-Vis, circular-dichroism, X-ray absorption spectroscopy...
Max ERC Funding
1 499 948 €
Duration
Start date: 2015-03-01, End date: 2021-08-31
Project acronym ARPEMA
Project Anionic redox processes: A transformational approach for advanced energy materials
Researcher (PI) Jean-Marie Tarascon
Host Institution (HI) COLLEGE DE FRANCE
Country France
Call Details Advanced Grant (AdG), PE5, ERC-2014-ADG
Summary Redox chemistry provides the fundamental basis for numerous energy-related electrochemical devices, among which Li-ion batteries (LIB) have become the premier energy storage technology for portable electronics and vehicle electrification. Throughout its history, LIB technology has relied on cationic redox reactions as the sole source of energy storage capacity. This is no longer true. In 2013 we demonstrated that Li-driven reversible formation of (O2)n peroxo-groups in new layered oxides led to extraordinary increases in energy storage capacity. This finding, which is receiving worldwide attention, represents a transformational approach for creating advanced energy materials for not only energy storage, but also water splitting applications as both involve peroxo species. However, as is often the case with new discoveries, the fundamental science at work needs to be rationalized and understood. Specifically, what are the mechanisms for ion and electron transport in these Li-driven anionic redox reactions?
To address these seminal questions and to widen the spectrum of materials (transition metal and anion) showing anionic redox chemistry, we propose a comprehensive research program that combines experimental and computational methods. The experimental methods include structural and electrochemical analyses (both ex-situ and in-situ), and computational modeling will be based on first-principles DFT for identifying the fundamental processes that enable anionic redox activity. The knowledge gained from these studies, in combination with our expertise in inorganic synthesis, will enable us to design a new generation of Li-ion battery materials that exhibit substantial increases (20 -30%) in energy storage capacity, with additional impacts on the development of Na-ion batteries and the design of water splitting catalysts, with the feasibility to surpass current water splitting efficiencies via novel (O2)n-based electrocatalysts.
Summary
Redox chemistry provides the fundamental basis for numerous energy-related electrochemical devices, among which Li-ion batteries (LIB) have become the premier energy storage technology for portable electronics and vehicle electrification. Throughout its history, LIB technology has relied on cationic redox reactions as the sole source of energy storage capacity. This is no longer true. In 2013 we demonstrated that Li-driven reversible formation of (O2)n peroxo-groups in new layered oxides led to extraordinary increases in energy storage capacity. This finding, which is receiving worldwide attention, represents a transformational approach for creating advanced energy materials for not only energy storage, but also water splitting applications as both involve peroxo species. However, as is often the case with new discoveries, the fundamental science at work needs to be rationalized and understood. Specifically, what are the mechanisms for ion and electron transport in these Li-driven anionic redox reactions?
To address these seminal questions and to widen the spectrum of materials (transition metal and anion) showing anionic redox chemistry, we propose a comprehensive research program that combines experimental and computational methods. The experimental methods include structural and electrochemical analyses (both ex-situ and in-situ), and computational modeling will be based on first-principles DFT for identifying the fundamental processes that enable anionic redox activity. The knowledge gained from these studies, in combination with our expertise in inorganic synthesis, will enable us to design a new generation of Li-ion battery materials that exhibit substantial increases (20 -30%) in energy storage capacity, with additional impacts on the development of Na-ion batteries and the design of water splitting catalysts, with the feasibility to surpass current water splitting efficiencies via novel (O2)n-based electrocatalysts.
Max ERC Funding
2 249 196 €
Duration
Start date: 2015-10-01, End date: 2021-03-31
Project acronym ATMOFLEX
Project Turbulent Transport in the Atmosphere: Fluctuations and Extreme Events
Researcher (PI) Jeremie Bec
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), PE3, ERC-2009-StG
Summary A major part of the physical and chemical processes occurring in the atmosphere involves the turbulent transport of tiny particles. Current studies and models use a formulation in terms of mean fields, where the strong variations in the dynamical and statistical properties of the particles are neglected and where the underlying fluctuations of the fluid flow velocity are oversimplified. Devising an accurate understanding of the influence of air turbulence and of the extreme fluctuations that it generates in the dispersed phase remains a challenging issue. This project aims at coordinating and integrating theoretical, numerical, experimental, and observational efforts to develop a new statistical understanding of the role of fluctuations in atmospheric transport processes. The proposed work will cover individual as well as collective behaviors and will provide a systematic and unified description of targeted specific processes involving suspended drops or particles: the dispersion of pollutants from a source, the growth by condensation and coagulation of droplets and ice crystals in clouds, the scavenging, settling and re-suspension of aerosols, and the radiative and climatic effects of particles. The proposed approach is based on the use of tools borrowed from statistical physics and field theory, and from the theory of large deviations and of random dynamical systems in order to design new observables that will be simultaneously tractable analytically in simplified models and of relevance for the quantitative handling of such physical mechanisms. One of the outcomes will be to provide a new framework for improving and refining the methods used in meteorology and atmospheric sciences and to answer the long-standing question of the effects of suspended particles onto climate.
Summary
A major part of the physical and chemical processes occurring in the atmosphere involves the turbulent transport of tiny particles. Current studies and models use a formulation in terms of mean fields, where the strong variations in the dynamical and statistical properties of the particles are neglected and where the underlying fluctuations of the fluid flow velocity are oversimplified. Devising an accurate understanding of the influence of air turbulence and of the extreme fluctuations that it generates in the dispersed phase remains a challenging issue. This project aims at coordinating and integrating theoretical, numerical, experimental, and observational efforts to develop a new statistical understanding of the role of fluctuations in atmospheric transport processes. The proposed work will cover individual as well as collective behaviors and will provide a systematic and unified description of targeted specific processes involving suspended drops or particles: the dispersion of pollutants from a source, the growth by condensation and coagulation of droplets and ice crystals in clouds, the scavenging, settling and re-suspension of aerosols, and the radiative and climatic effects of particles. The proposed approach is based on the use of tools borrowed from statistical physics and field theory, and from the theory of large deviations and of random dynamical systems in order to design new observables that will be simultaneously tractable analytically in simplified models and of relevance for the quantitative handling of such physical mechanisms. One of the outcomes will be to provide a new framework for improving and refining the methods used in meteorology and atmospheric sciences and to answer the long-standing question of the effects of suspended particles onto climate.
Max ERC Funding
1 200 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym BetaRegeneration
Project Induction of Insulin-producing beta-cells Regeneration in vivo
Researcher (PI) Patrick Collombat
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Country France
Call Details Starting Grant (StG), LS4, ERC-2011-StG_20101109
Summary Diabetes has become one of the most widespread metabolic disorders with epidemic dimensions affecting almost 6% of the world’s population. Despite modern treatments, the life expectancy of patients with Type 1 diabetes remains reduced as compared to healthy subjects. There is therefore a need for alternative therapies. Towards this aim, using the mouse, we recently demonstrated that the in vivo forced expression of a single factor in pancreatic alpha-cells is sufficient to induce a continuous regeneration of alpha-cells and their subsequent conversion into beta-like cells, such converted cells being capable of reversing the consequences of chemically-induced diabetes in vivo (Collombat et al. Cell, 2009).
The PI and his team therefore propose to further decipher the mechanisms involved in this alpha-cell-mediated beta-cell regeneration process and determine whether this approach may be applied to adult animals and whether it would efficiently reverse Type 1 diabetes. Furthermore, a major effort will be made to verify whether our findings could be translated to human. Specifically, we will use a tri-partite approach to address the following issues: (1) Can the in vivo alpha-cell-mediated beta-cell regeneration be induced in adults mice? What would be the genetic determinants involved? (2) Can alpha-cell-mediated beta-cell regeneration reverse diabetes in the NOD Type 1 diabetes mouse model? (3) Can adult human alpha-cells be converted into beta-like cells?
Together, these ambitious objectives will most certainly allow us to gain new insight into the mechanisms defining the identity and the reprogramming capabilities of mouse and human endocrine cells and may thereby open new avenues for the treatment of diabetes. Similarly, the determination of the molecular triggers implicated in the beta-cell regeneration observed in our diabetic mice may lead to exciting new findings, including the identification of “drugable” targets of importance for human diabetic patients.
Summary
Diabetes has become one of the most widespread metabolic disorders with epidemic dimensions affecting almost 6% of the world’s population. Despite modern treatments, the life expectancy of patients with Type 1 diabetes remains reduced as compared to healthy subjects. There is therefore a need for alternative therapies. Towards this aim, using the mouse, we recently demonstrated that the in vivo forced expression of a single factor in pancreatic alpha-cells is sufficient to induce a continuous regeneration of alpha-cells and their subsequent conversion into beta-like cells, such converted cells being capable of reversing the consequences of chemically-induced diabetes in vivo (Collombat et al. Cell, 2009).
The PI and his team therefore propose to further decipher the mechanisms involved in this alpha-cell-mediated beta-cell regeneration process and determine whether this approach may be applied to adult animals and whether it would efficiently reverse Type 1 diabetes. Furthermore, a major effort will be made to verify whether our findings could be translated to human. Specifically, we will use a tri-partite approach to address the following issues: (1) Can the in vivo alpha-cell-mediated beta-cell regeneration be induced in adults mice? What would be the genetic determinants involved? (2) Can alpha-cell-mediated beta-cell regeneration reverse diabetes in the NOD Type 1 diabetes mouse model? (3) Can adult human alpha-cells be converted into beta-like cells?
Together, these ambitious objectives will most certainly allow us to gain new insight into the mechanisms defining the identity and the reprogramming capabilities of mouse and human endocrine cells and may thereby open new avenues for the treatment of diabetes. Similarly, the determination of the molecular triggers implicated in the beta-cell regeneration observed in our diabetic mice may lead to exciting new findings, including the identification of “drugable” targets of importance for human diabetic patients.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym BIOMIM
Project Biomimetic films and membranes as advanced materials for studies on cellular processes
Researcher (PI) Catherine Cecile Picart
Host Institution (HI) INSTITUT POLYTECHNIQUE DE GRENOBLE
Country France
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary The main objective nowadays in the field of biomaterials is to design highly performing bioinspired materials learning from natural processes. Importantly, biochemical and physical cues are key parameters that can affect cellular processes. Controlling processes that occur at the cell/material interface is also of prime importance to guide the cell response. The main aim of the current project is to develop novel functional bio-nanomaterials for in vitro biological studies. Our strategy is based on two related projects.
The first project deals with the rational design of smart films with foreseen applications in musculoskeletal tissue engineering. We will gain knowledge of key cellular processes by designing well defined self-assembled thin coatings. These multi-functional surfaces with bioactivity (incorporation of growth factors), mechanical (film stiffness) and topographical properties (spatial control of the film s properties) will serve as tools to mimic the complexity of the natural materials in vivo and to present bioactive molecules in the solid phase. We will get a better fundamental understanding of how cellular functions, including adhesion and differentiation of muscle cells are affected by the materials s surface properties.
In the second project, we will investigate at the molecular level a crucial aspect of cell adhesion and motility, which is the intracellular linkage between the plasma membrane and the cell cytoskeleton. We aim to elucidate the role of ERM proteins, especially ezrin and moesin, in the direct linkage between the plasma membrane and actin filaments. Here again, we will use a well defined microenvironment in vitro to simplify the complexity of the interactions that occur in cellulo. To this end, lipid membranes containing a key regulator lipid from the phosphoinositides familly, PIP2, will be employed in conjunction with purified proteins to investigate actin regulation by ERM proteins in the presence of PIP2-membranes.
Summary
The main objective nowadays in the field of biomaterials is to design highly performing bioinspired materials learning from natural processes. Importantly, biochemical and physical cues are key parameters that can affect cellular processes. Controlling processes that occur at the cell/material interface is also of prime importance to guide the cell response. The main aim of the current project is to develop novel functional bio-nanomaterials for in vitro biological studies. Our strategy is based on two related projects.
The first project deals with the rational design of smart films with foreseen applications in musculoskeletal tissue engineering. We will gain knowledge of key cellular processes by designing well defined self-assembled thin coatings. These multi-functional surfaces with bioactivity (incorporation of growth factors), mechanical (film stiffness) and topographical properties (spatial control of the film s properties) will serve as tools to mimic the complexity of the natural materials in vivo and to present bioactive molecules in the solid phase. We will get a better fundamental understanding of how cellular functions, including adhesion and differentiation of muscle cells are affected by the materials s surface properties.
In the second project, we will investigate at the molecular level a crucial aspect of cell adhesion and motility, which is the intracellular linkage between the plasma membrane and the cell cytoskeleton. We aim to elucidate the role of ERM proteins, especially ezrin and moesin, in the direct linkage between the plasma membrane and actin filaments. Here again, we will use a well defined microenvironment in vitro to simplify the complexity of the interactions that occur in cellulo. To this end, lipid membranes containing a key regulator lipid from the phosphoinositides familly, PIP2, will be employed in conjunction with purified proteins to investigate actin regulation by ERM proteins in the presence of PIP2-membranes.
Max ERC Funding
1 499 996 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym BioPoweredCL
Project Bright and biologically powered chemiluminescent labels for cell and tissue imaging
Researcher (PI) Alessandro ALIPRANDI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), PE5, ERC-2020-STG
Summary Imaging is one of the most powerful technique to visualize molecules, tissues, to understand and follow processes and it is the most used diagnostic tool in vitro and in vivo, Current biomedical imaging techniques can have high sensitivity, good spatial/temporal resolution and, in some cases, high tissue penetration but cannot combine all of these desired properties without using harmful radiations (or toxic labels) or very expensive equipment. Optical imaging techniques represent the best compromise among them; however, their ability to scale to human body is precluded. The main restriction of fluorescence imaging is that it requires light excitation which is limited by tissue absorption and scattering. Such limitations are not present in chemiluminescence imaging since light production occurs through a chemical reaction, resulting in higher penetration depth and best sensitivity. However both natural and artificial chemiluminescent systems require a continuous flow of exogenous reactants since all substrates are irreversibly consumed. BioPoweredCL aims to develop an unprecedented strategy to enable molecular imaging by realizing near infrared luminophores that harvest energy from the cellular respiration chain, in order to emit light without being consumed themselves. BioPoweredCL takes advantage of the most recent progress in artificial light production to develop a novel imaging technique where the absence of an excitation source overcomes the current limitations of fluorescence imaging while the regeneration of the luminophore overcomes the limitations of bioluminescence imaging. If successful it could replace current techniques based on harmful ionizing radiations such as X-rays or γ-rays. To reach such a grand-challenge the work plan is articulated into three different phases: 1) synthesis of new luminophores; 2) electrochemical characterization and energy cell harvesting; 3) in vitro experiments where the full potential of the approach will be validated.
Summary
Imaging is one of the most powerful technique to visualize molecules, tissues, to understand and follow processes and it is the most used diagnostic tool in vitro and in vivo, Current biomedical imaging techniques can have high sensitivity, good spatial/temporal resolution and, in some cases, high tissue penetration but cannot combine all of these desired properties without using harmful radiations (or toxic labels) or very expensive equipment. Optical imaging techniques represent the best compromise among them; however, their ability to scale to human body is precluded. The main restriction of fluorescence imaging is that it requires light excitation which is limited by tissue absorption and scattering. Such limitations are not present in chemiluminescence imaging since light production occurs through a chemical reaction, resulting in higher penetration depth and best sensitivity. However both natural and artificial chemiluminescent systems require a continuous flow of exogenous reactants since all substrates are irreversibly consumed. BioPoweredCL aims to develop an unprecedented strategy to enable molecular imaging by realizing near infrared luminophores that harvest energy from the cellular respiration chain, in order to emit light without being consumed themselves. BioPoweredCL takes advantage of the most recent progress in artificial light production to develop a novel imaging technique where the absence of an excitation source overcomes the current limitations of fluorescence imaging while the regeneration of the luminophore overcomes the limitations of bioluminescence imaging. If successful it could replace current techniques based on harmful ionizing radiations such as X-rays or γ-rays. To reach such a grand-challenge the work plan is articulated into three different phases: 1) synthesis of new luminophores; 2) electrochemical characterization and energy cell harvesting; 3) in vitro experiments where the full potential of the approach will be validated.
Max ERC Funding
1 449 750 €
Duration
Start date: 2021-10-01, End date: 2026-09-30
Project acronym bioSPINspired
Project Bio-inspired Spin-Torque Computing Architectures
Researcher (PI) Julie Grollier
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), PE3, ERC-2015-CoG
Summary In the bioSPINspired project, I propose to use my experience and skills in spintronics, non-linear dynamics and neuromorphic nanodevices to realize bio-inspired spin torque computing architectures. I will develop a bottom-up approach to build spintronic data processing systems that perform low power ‘cognitive’ tasks on-chip and could ultimately complement our traditional microprocessors. I will start by showing that spin torque nanodevices, which are multi-functional and tunable nonlinear dynamical nano-components, are capable of emulating both neurons and synapses. Then I will assemble these spin-torque nano-synapses and nano-neurons into modules that implement brain-inspired algorithms in hardware. The brain displays many features typical of non-linear dynamical networks, such as synchronization or chaotic behaviour. These observations have inspired a whole class of models that harness the power of complex non-linear dynamical networks for computing. Following such schemes, I will interconnect the spin torque nanodevices by electrical and magnetic interactions so that they can couple to each other, synchronize and display complex dynamics. Then I will demonstrate that when perturbed by external inputs, these spin torque networks can perform recognition tasks by converging to an attractor state, or use the separation properties at the edge of chaos to classify data. In the process, I will revisit these brain-inspired abstract models to adapt them to the constraints of hardware implementations. Finally I will investigate how the spin torque modules can be efficiently connected together with CMOS buffers to perform higher level computing tasks. The table-top prototypes, hardware-adapted computing models and large-scale simulations developed in bioSPINspired will lay the foundations of spin torque bio-inspired computing and open the path to the fabrication of fully integrated, ultra-dense and efficient CMOS/spin-torque nanodevice chips.
Summary
In the bioSPINspired project, I propose to use my experience and skills in spintronics, non-linear dynamics and neuromorphic nanodevices to realize bio-inspired spin torque computing architectures. I will develop a bottom-up approach to build spintronic data processing systems that perform low power ‘cognitive’ tasks on-chip and could ultimately complement our traditional microprocessors. I will start by showing that spin torque nanodevices, which are multi-functional and tunable nonlinear dynamical nano-components, are capable of emulating both neurons and synapses. Then I will assemble these spin-torque nano-synapses and nano-neurons into modules that implement brain-inspired algorithms in hardware. The brain displays many features typical of non-linear dynamical networks, such as synchronization or chaotic behaviour. These observations have inspired a whole class of models that harness the power of complex non-linear dynamical networks for computing. Following such schemes, I will interconnect the spin torque nanodevices by electrical and magnetic interactions so that they can couple to each other, synchronize and display complex dynamics. Then I will demonstrate that when perturbed by external inputs, these spin torque networks can perform recognition tasks by converging to an attractor state, or use the separation properties at the edge of chaos to classify data. In the process, I will revisit these brain-inspired abstract models to adapt them to the constraints of hardware implementations. Finally I will investigate how the spin torque modules can be efficiently connected together with CMOS buffers to perform higher level computing tasks. The table-top prototypes, hardware-adapted computing models and large-scale simulations developed in bioSPINspired will lay the foundations of spin torque bio-inspired computing and open the path to the fabrication of fully integrated, ultra-dense and efficient CMOS/spin-torque nanodevice chips.
Max ERC Funding
1 907 767 €
Duration
Start date: 2016-09-01, End date: 2021-08-31