Project acronym aLzINK
Project Alzheimer's disease and Zinc: the missing link ?
Researcher (PI) Christelle Sandrine Florence HUREAU-SABATER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), PE5, ERC-2014-STG
Summary Alzheimer's disease (AD) is one of the most serious diseases mankind is now facing as its social and economical impacts are increasing fastly. AD is very complex and the amyloid-β (Aβ) peptide as well as metallic ions (mainly copper and zinc) have been linked to its aetiology. While the deleterious impact of Cu is widely acknowledged, intervention of Zn is certain but still needs to be figured out.
The main objective of the present proposal, which is strongly anchored in the bio-inorganic chemistry field at interface with spectroscopy and biochemistry, is to design, synthesize and study new drug candidates (ligands L) capable of (i) targeting Cu(II) bound to Aβ within the synaptic cleft, where Zn is co-localized and ultimately to develop Zn-driven Cu(II) removal from Aβ and (ii) disrupting the aberrant Cu(II)-Aβ interactions involved in ROS production and Aβ aggregation, two deleterious events in AD. The drug candidates will thus have high Cu(II) over Zn selectively to preserve the crucial physiological role of Zn in the neurotransmission process. Zn is always underestimated (if not completely neglected) in current therapeutic approaches targeting Cu(II) despite the known interference of Zn with Cu(II) binding.
To reach this objective, it is absolutely necessary to first understand the metal ions trafficking issues in presence of Aβ alone at a molecular level (i.e. without the drug candidates).This includes: (i) determination of Zn binding site to Aβ, impact on Aβ aggregation and cell toxicity, (ii) determination of the mutual influence of Zn and Cu to their coordination to Aβ, impact on Aβ aggregation, ROS production and cell toxicity.
Methods used will span from organic synthesis to studies of neuronal model cells, with a major contribution of a wide panel of spectroscopic techniques including NMR, EPR, mass spectrometry, fluorescence, UV-Vis, circular-dichroism, X-ray absorption spectroscopy...
Summary
Alzheimer's disease (AD) is one of the most serious diseases mankind is now facing as its social and economical impacts are increasing fastly. AD is very complex and the amyloid-β (Aβ) peptide as well as metallic ions (mainly copper and zinc) have been linked to its aetiology. While the deleterious impact of Cu is widely acknowledged, intervention of Zn is certain but still needs to be figured out.
The main objective of the present proposal, which is strongly anchored in the bio-inorganic chemistry field at interface with spectroscopy and biochemistry, is to design, synthesize and study new drug candidates (ligands L) capable of (i) targeting Cu(II) bound to Aβ within the synaptic cleft, where Zn is co-localized and ultimately to develop Zn-driven Cu(II) removal from Aβ and (ii) disrupting the aberrant Cu(II)-Aβ interactions involved in ROS production and Aβ aggregation, two deleterious events in AD. The drug candidates will thus have high Cu(II) over Zn selectively to preserve the crucial physiological role of Zn in the neurotransmission process. Zn is always underestimated (if not completely neglected) in current therapeutic approaches targeting Cu(II) despite the known interference of Zn with Cu(II) binding.
To reach this objective, it is absolutely necessary to first understand the metal ions trafficking issues in presence of Aβ alone at a molecular level (i.e. without the drug candidates).This includes: (i) determination of Zn binding site to Aβ, impact on Aβ aggregation and cell toxicity, (ii) determination of the mutual influence of Zn and Cu to their coordination to Aβ, impact on Aβ aggregation, ROS production and cell toxicity.
Methods used will span from organic synthesis to studies of neuronal model cells, with a major contribution of a wide panel of spectroscopic techniques including NMR, EPR, mass spectrometry, fluorescence, UV-Vis, circular-dichroism, X-ray absorption spectroscopy...
Max ERC Funding
1 499 948 €
Duration
Start date: 2015-03-01, End date: 2021-08-31
Project acronym ATMOFLEX
Project Turbulent Transport in the Atmosphere: Fluctuations and Extreme Events
Researcher (PI) Jeremie Bec
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), PE3, ERC-2009-StG
Summary A major part of the physical and chemical processes occurring in the atmosphere involves the turbulent transport of tiny particles. Current studies and models use a formulation in terms of mean fields, where the strong variations in the dynamical and statistical properties of the particles are neglected and where the underlying fluctuations of the fluid flow velocity are oversimplified. Devising an accurate understanding of the influence of air turbulence and of the extreme fluctuations that it generates in the dispersed phase remains a challenging issue. This project aims at coordinating and integrating theoretical, numerical, experimental, and observational efforts to develop a new statistical understanding of the role of fluctuations in atmospheric transport processes. The proposed work will cover individual as well as collective behaviors and will provide a systematic and unified description of targeted specific processes involving suspended drops or particles: the dispersion of pollutants from a source, the growth by condensation and coagulation of droplets and ice crystals in clouds, the scavenging, settling and re-suspension of aerosols, and the radiative and climatic effects of particles. The proposed approach is based on the use of tools borrowed from statistical physics and field theory, and from the theory of large deviations and of random dynamical systems in order to design new observables that will be simultaneously tractable analytically in simplified models and of relevance for the quantitative handling of such physical mechanisms. One of the outcomes will be to provide a new framework for improving and refining the methods used in meteorology and atmospheric sciences and to answer the long-standing question of the effects of suspended particles onto climate.
Summary
A major part of the physical and chemical processes occurring in the atmosphere involves the turbulent transport of tiny particles. Current studies and models use a formulation in terms of mean fields, where the strong variations in the dynamical and statistical properties of the particles are neglected and where the underlying fluctuations of the fluid flow velocity are oversimplified. Devising an accurate understanding of the influence of air turbulence and of the extreme fluctuations that it generates in the dispersed phase remains a challenging issue. This project aims at coordinating and integrating theoretical, numerical, experimental, and observational efforts to develop a new statistical understanding of the role of fluctuations in atmospheric transport processes. The proposed work will cover individual as well as collective behaviors and will provide a systematic and unified description of targeted specific processes involving suspended drops or particles: the dispersion of pollutants from a source, the growth by condensation and coagulation of droplets and ice crystals in clouds, the scavenging, settling and re-suspension of aerosols, and the radiative and climatic effects of particles. The proposed approach is based on the use of tools borrowed from statistical physics and field theory, and from the theory of large deviations and of random dynamical systems in order to design new observables that will be simultaneously tractable analytically in simplified models and of relevance for the quantitative handling of such physical mechanisms. One of the outcomes will be to provide a new framework for improving and refining the methods used in meteorology and atmospheric sciences and to answer the long-standing question of the effects of suspended particles onto climate.
Max ERC Funding
1 200 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym BetaRegeneration
Project Induction of Insulin-producing beta-cells Regeneration in vivo
Researcher (PI) Patrick Collombat
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Country France
Call Details Starting Grant (StG), LS4, ERC-2011-StG_20101109
Summary Diabetes has become one of the most widespread metabolic disorders with epidemic dimensions affecting almost 6% of the world’s population. Despite modern treatments, the life expectancy of patients with Type 1 diabetes remains reduced as compared to healthy subjects. There is therefore a need for alternative therapies. Towards this aim, using the mouse, we recently demonstrated that the in vivo forced expression of a single factor in pancreatic alpha-cells is sufficient to induce a continuous regeneration of alpha-cells and their subsequent conversion into beta-like cells, such converted cells being capable of reversing the consequences of chemically-induced diabetes in vivo (Collombat et al. Cell, 2009).
The PI and his team therefore propose to further decipher the mechanisms involved in this alpha-cell-mediated beta-cell regeneration process and determine whether this approach may be applied to adult animals and whether it would efficiently reverse Type 1 diabetes. Furthermore, a major effort will be made to verify whether our findings could be translated to human. Specifically, we will use a tri-partite approach to address the following issues: (1) Can the in vivo alpha-cell-mediated beta-cell regeneration be induced in adults mice? What would be the genetic determinants involved? (2) Can alpha-cell-mediated beta-cell regeneration reverse diabetes in the NOD Type 1 diabetes mouse model? (3) Can adult human alpha-cells be converted into beta-like cells?
Together, these ambitious objectives will most certainly allow us to gain new insight into the mechanisms defining the identity and the reprogramming capabilities of mouse and human endocrine cells and may thereby open new avenues for the treatment of diabetes. Similarly, the determination of the molecular triggers implicated in the beta-cell regeneration observed in our diabetic mice may lead to exciting new findings, including the identification of “drugable” targets of importance for human diabetic patients.
Summary
Diabetes has become one of the most widespread metabolic disorders with epidemic dimensions affecting almost 6% of the world’s population. Despite modern treatments, the life expectancy of patients with Type 1 diabetes remains reduced as compared to healthy subjects. There is therefore a need for alternative therapies. Towards this aim, using the mouse, we recently demonstrated that the in vivo forced expression of a single factor in pancreatic alpha-cells is sufficient to induce a continuous regeneration of alpha-cells and their subsequent conversion into beta-like cells, such converted cells being capable of reversing the consequences of chemically-induced diabetes in vivo (Collombat et al. Cell, 2009).
The PI and his team therefore propose to further decipher the mechanisms involved in this alpha-cell-mediated beta-cell regeneration process and determine whether this approach may be applied to adult animals and whether it would efficiently reverse Type 1 diabetes. Furthermore, a major effort will be made to verify whether our findings could be translated to human. Specifically, we will use a tri-partite approach to address the following issues: (1) Can the in vivo alpha-cell-mediated beta-cell regeneration be induced in adults mice? What would be the genetic determinants involved? (2) Can alpha-cell-mediated beta-cell regeneration reverse diabetes in the NOD Type 1 diabetes mouse model? (3) Can adult human alpha-cells be converted into beta-like cells?
Together, these ambitious objectives will most certainly allow us to gain new insight into the mechanisms defining the identity and the reprogramming capabilities of mouse and human endocrine cells and may thereby open new avenues for the treatment of diabetes. Similarly, the determination of the molecular triggers implicated in the beta-cell regeneration observed in our diabetic mice may lead to exciting new findings, including the identification of “drugable” targets of importance for human diabetic patients.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym BIOMIM
Project Biomimetic films and membranes as advanced materials for studies on cellular processes
Researcher (PI) Catherine Cecile Picart
Host Institution (HI) INSTITUT POLYTECHNIQUE DE GRENOBLE
Country France
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary The main objective nowadays in the field of biomaterials is to design highly performing bioinspired materials learning from natural processes. Importantly, biochemical and physical cues are key parameters that can affect cellular processes. Controlling processes that occur at the cell/material interface is also of prime importance to guide the cell response. The main aim of the current project is to develop novel functional bio-nanomaterials for in vitro biological studies. Our strategy is based on two related projects.
The first project deals with the rational design of smart films with foreseen applications in musculoskeletal tissue engineering. We will gain knowledge of key cellular processes by designing well defined self-assembled thin coatings. These multi-functional surfaces with bioactivity (incorporation of growth factors), mechanical (film stiffness) and topographical properties (spatial control of the film s properties) will serve as tools to mimic the complexity of the natural materials in vivo and to present bioactive molecules in the solid phase. We will get a better fundamental understanding of how cellular functions, including adhesion and differentiation of muscle cells are affected by the materials s surface properties.
In the second project, we will investigate at the molecular level a crucial aspect of cell adhesion and motility, which is the intracellular linkage between the plasma membrane and the cell cytoskeleton. We aim to elucidate the role of ERM proteins, especially ezrin and moesin, in the direct linkage between the plasma membrane and actin filaments. Here again, we will use a well defined microenvironment in vitro to simplify the complexity of the interactions that occur in cellulo. To this end, lipid membranes containing a key regulator lipid from the phosphoinositides familly, PIP2, will be employed in conjunction with purified proteins to investigate actin regulation by ERM proteins in the presence of PIP2-membranes.
Summary
The main objective nowadays in the field of biomaterials is to design highly performing bioinspired materials learning from natural processes. Importantly, biochemical and physical cues are key parameters that can affect cellular processes. Controlling processes that occur at the cell/material interface is also of prime importance to guide the cell response. The main aim of the current project is to develop novel functional bio-nanomaterials for in vitro biological studies. Our strategy is based on two related projects.
The first project deals with the rational design of smart films with foreseen applications in musculoskeletal tissue engineering. We will gain knowledge of key cellular processes by designing well defined self-assembled thin coatings. These multi-functional surfaces with bioactivity (incorporation of growth factors), mechanical (film stiffness) and topographical properties (spatial control of the film s properties) will serve as tools to mimic the complexity of the natural materials in vivo and to present bioactive molecules in the solid phase. We will get a better fundamental understanding of how cellular functions, including adhesion and differentiation of muscle cells are affected by the materials s surface properties.
In the second project, we will investigate at the molecular level a crucial aspect of cell adhesion and motility, which is the intracellular linkage between the plasma membrane and the cell cytoskeleton. We aim to elucidate the role of ERM proteins, especially ezrin and moesin, in the direct linkage between the plasma membrane and actin filaments. Here again, we will use a well defined microenvironment in vitro to simplify the complexity of the interactions that occur in cellulo. To this end, lipid membranes containing a key regulator lipid from the phosphoinositides familly, PIP2, will be employed in conjunction with purified proteins to investigate actin regulation by ERM proteins in the presence of PIP2-membranes.
Max ERC Funding
1 499 996 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym BioPoweredCL
Project Bright and biologically powered chemiluminescent labels for cell and tissue imaging
Researcher (PI) Alessandro ALIPRANDI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), PE5, ERC-2020-STG
Summary Imaging is one of the most powerful technique to visualize molecules, tissues, to understand and follow processes and it is the most used diagnostic tool in vitro and in vivo, Current biomedical imaging techniques can have high sensitivity, good spatial/temporal resolution and, in some cases, high tissue penetration but cannot combine all of these desired properties without using harmful radiations (or toxic labels) or very expensive equipment. Optical imaging techniques represent the best compromise among them; however, their ability to scale to human body is precluded. The main restriction of fluorescence imaging is that it requires light excitation which is limited by tissue absorption and scattering. Such limitations are not present in chemiluminescence imaging since light production occurs through a chemical reaction, resulting in higher penetration depth and best sensitivity. However both natural and artificial chemiluminescent systems require a continuous flow of exogenous reactants since all substrates are irreversibly consumed. BioPoweredCL aims to develop an unprecedented strategy to enable molecular imaging by realizing near infrared luminophores that harvest energy from the cellular respiration chain, in order to emit light without being consumed themselves. BioPoweredCL takes advantage of the most recent progress in artificial light production to develop a novel imaging technique where the absence of an excitation source overcomes the current limitations of fluorescence imaging while the regeneration of the luminophore overcomes the limitations of bioluminescence imaging. If successful it could replace current techniques based on harmful ionizing radiations such as X-rays or γ-rays. To reach such a grand-challenge the work plan is articulated into three different phases: 1) synthesis of new luminophores; 2) electrochemical characterization and energy cell harvesting; 3) in vitro experiments where the full potential of the approach will be validated.
Summary
Imaging is one of the most powerful technique to visualize molecules, tissues, to understand and follow processes and it is the most used diagnostic tool in vitro and in vivo, Current biomedical imaging techniques can have high sensitivity, good spatial/temporal resolution and, in some cases, high tissue penetration but cannot combine all of these desired properties without using harmful radiations (or toxic labels) or very expensive equipment. Optical imaging techniques represent the best compromise among them; however, their ability to scale to human body is precluded. The main restriction of fluorescence imaging is that it requires light excitation which is limited by tissue absorption and scattering. Such limitations are not present in chemiluminescence imaging since light production occurs through a chemical reaction, resulting in higher penetration depth and best sensitivity. However both natural and artificial chemiluminescent systems require a continuous flow of exogenous reactants since all substrates are irreversibly consumed. BioPoweredCL aims to develop an unprecedented strategy to enable molecular imaging by realizing near infrared luminophores that harvest energy from the cellular respiration chain, in order to emit light without being consumed themselves. BioPoweredCL takes advantage of the most recent progress in artificial light production to develop a novel imaging technique where the absence of an excitation source overcomes the current limitations of fluorescence imaging while the regeneration of the luminophore overcomes the limitations of bioluminescence imaging. If successful it could replace current techniques based on harmful ionizing radiations such as X-rays or γ-rays. To reach such a grand-challenge the work plan is articulated into three different phases: 1) synthesis of new luminophores; 2) electrochemical characterization and energy cell harvesting; 3) in vitro experiments where the full potential of the approach will be validated.
Max ERC Funding
1 449 750 €
Duration
Start date: 2021-10-01, End date: 2026-09-30
Project acronym BIOUNCERTAINTY
Project Deep uncertainties in bioethics: genetic research, preventive medicine, reproductive decisions
Researcher (PI) Tomasz ZURADZKI
Host Institution (HI) UNIWERSYTET JAGIELLONSKI
Country Poland
Call Details Starting Grant (StG), SH5, ERC-2018-STG
Summary Uncertainty is everywhere, as the saying goes, but rarely considered in ethical reflections. This project aims to reinterpret ethical discussions on current advances in biomedicine: instead of understanding bioethical positions as extensions of classical normative views in ethics (consequentialism, deontologism, contractualism etc.), my project interprets them more accurately as involving various normative approaches to decision making under uncertainty. The following hard cases in bioethics provide the motivation for research:
1) Regulating scientific research under uncertainty about the ontological/moral status (e.g. parthenogenetic stem cells derived from human parthenotes) in the context of meta-reasoning under normative uncertainty.
2) The value of preventive medicine in healthcare (e.g. vaccinations) in the context of decision-making under metaphysical indeterminacy.
3) Population or reproductive decisions (e.g. preimplantation genetic diagnosis) in the context of valuing mere existence.
The main drive behind this project is the rapid progress in biomedical research combined with new kinds of uncertainties. These new and “deep” uncertainties trigger specific forms of emotions and cognitions that influence normative judgments and decisions. The main research questions that will be addressed by conceptual analysis, new psychological experiments, and case studies are the following: how do the heuristics and biases (H&B) documented by behavioral scientists influence the formation of normative judgments in bioethical contexts; how to demarcate between distorted and undistorted value judgments; to what extent is it permissible for individuals or policy makers to yield to H&B. The hypothesis is that many existing bioethical rules, regulations, practices seem to have emerged from unreliable reactions, rather than by means of deliberation on the possible justifications for alternative ways to decide about them under several layers and types of uncertainty.
Summary
Uncertainty is everywhere, as the saying goes, but rarely considered in ethical reflections. This project aims to reinterpret ethical discussions on current advances in biomedicine: instead of understanding bioethical positions as extensions of classical normative views in ethics (consequentialism, deontologism, contractualism etc.), my project interprets them more accurately as involving various normative approaches to decision making under uncertainty. The following hard cases in bioethics provide the motivation for research:
1) Regulating scientific research under uncertainty about the ontological/moral status (e.g. parthenogenetic stem cells derived from human parthenotes) in the context of meta-reasoning under normative uncertainty.
2) The value of preventive medicine in healthcare (e.g. vaccinations) in the context of decision-making under metaphysical indeterminacy.
3) Population or reproductive decisions (e.g. preimplantation genetic diagnosis) in the context of valuing mere existence.
The main drive behind this project is the rapid progress in biomedical research combined with new kinds of uncertainties. These new and “deep” uncertainties trigger specific forms of emotions and cognitions that influence normative judgments and decisions. The main research questions that will be addressed by conceptual analysis, new psychological experiments, and case studies are the following: how do the heuristics and biases (H&B) documented by behavioral scientists influence the formation of normative judgments in bioethical contexts; how to demarcate between distorted and undistorted value judgments; to what extent is it permissible for individuals or policy makers to yield to H&B. The hypothesis is that many existing bioethical rules, regulations, practices seem to have emerged from unreliable reactions, rather than by means of deliberation on the possible justifications for alternative ways to decide about them under several layers and types of uncertainty.
Max ERC Funding
1 499 625 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym CALI
Project The Cambodian Archaeological Lidar Initiative: Exploring Resilience in the Engineered Landscapes of Early SE Asia
Researcher (PI) Damian Evans
Host Institution (HI) ECOLE FRANCAISE D'EXTREME-ORIENT
Country France
Call Details Starting Grant (StG), SH6, ERC-2014-STG
Summary For over half a millennium, the great medieval capital of Angkor lay at the heart of a vast empire stretching across much of mainland SE Asia. Recent research has revealed that the famous monuments of Angkor were merely the epicentre of an immense settlement complex, with highly elaborate engineering works designed to manage water and mitigate the uncertainty of monsoon rains. Compelling evidence is now emerging that other temple complexes of the medieval Khmer Empire may also have formed the urban cores of dispersed, low-density settlements with similar systems of hydraulic engineering.
Using innovative airborne laser scanning (‘lidar’) technology, CALI will uncover, map and compare archaeological landscapes around all the major temple complexes of Cambodia, with a view to understanding what role these complex and vulnerable water management schemes played in the growth and decline of early civilisations in SE Asia. CALI will evaluate the hypothesis that the Khmer civilisation, in a bid to overcome the inherent constraints of a monsoon environment, became locked into rigid and inflexible traditions of urban development and large-scale hydraulic engineering that constrained their ability to adapt to rapidly-changing social, political and environmental circumstances.
By integrating data and techniques from fast-developing archaeological sciences like remote sensing, palaeoclimatology and geoinformatics, this work will provide important insights into the reasons for the collapse of inland agrarian empires in the middle of the second millennium AD, a transition that marks the emergence of modern mainland SE Asia. The lidar data will provide a comprehensive and internally-consistent archive of urban form at a regional scale, and offer a unique experimental space for evaluating socio-ecological resilience, persistence and transformation over two thousand years of human history, with clear implications for our understanding of contemporary urbanism and of urban futures.
Summary
For over half a millennium, the great medieval capital of Angkor lay at the heart of a vast empire stretching across much of mainland SE Asia. Recent research has revealed that the famous monuments of Angkor were merely the epicentre of an immense settlement complex, with highly elaborate engineering works designed to manage water and mitigate the uncertainty of monsoon rains. Compelling evidence is now emerging that other temple complexes of the medieval Khmer Empire may also have formed the urban cores of dispersed, low-density settlements with similar systems of hydraulic engineering.
Using innovative airborne laser scanning (‘lidar’) technology, CALI will uncover, map and compare archaeological landscapes around all the major temple complexes of Cambodia, with a view to understanding what role these complex and vulnerable water management schemes played in the growth and decline of early civilisations in SE Asia. CALI will evaluate the hypothesis that the Khmer civilisation, in a bid to overcome the inherent constraints of a monsoon environment, became locked into rigid and inflexible traditions of urban development and large-scale hydraulic engineering that constrained their ability to adapt to rapidly-changing social, political and environmental circumstances.
By integrating data and techniques from fast-developing archaeological sciences like remote sensing, palaeoclimatology and geoinformatics, this work will provide important insights into the reasons for the collapse of inland agrarian empires in the middle of the second millennium AD, a transition that marks the emergence of modern mainland SE Asia. The lidar data will provide a comprehensive and internally-consistent archive of urban form at a regional scale, and offer a unique experimental space for evaluating socio-ecological resilience, persistence and transformation over two thousand years of human history, with clear implications for our understanding of contemporary urbanism and of urban futures.
Max ERC Funding
1 482 844 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym CASTLES
Project Charge And Spin in TopologicaL Edge States
Researcher (PI) ERWANN YANN EMILE BOCQUILLON
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), PE3, ERC-2017-STG
Summary Topology provides mathematical tools to sort objects according to global properties regardless of local details, and manifests itself in various fields of physics. In solid-state physics, specific topological properties of the band structure, such as a band inversion, can for example robustly enforce the appearance of spin-polarized conducting states at the boundaries of the material, while its bulk remains insulating. The boundary states of these ‘topological insulators’ in fact provide a support system to encode information non-locally in ‘topological quantum bits’ robust to local perturbations. The emerging ‘topological quantum computation’ is as such an envisioned solution to decoherence problems in the realization of quantum computers. Despite immense theoretical and experimental efforts, the rise of these new materials has however been hampered by strong difficulties to observe robust and clear signatures of their predicted properties such as spin-polarization or perfect conductance.
These challenges strongly motivate my proposal to study two-dimensional topological insulators, and in particular explore the unknown dynamics of their topological edge states in normal and superconducting regimes. First it is possible to capture information both on charge and spin dynamics, and more clearly highlight the basic properties of topological edge states. Second, the dynamics reveals the effects of Coulomb interactions, an unexplored aspect that may explain the fragility of topological edge states. Finally, it enables the manipulation and characterization of quantum states on short time scales, relevant to quantum information processing. This project relies on the powerful toolbox offered by radiofrequency and current-correlations techniques and promises to open a new field of dynamical explorations of topological materials.
Summary
Topology provides mathematical tools to sort objects according to global properties regardless of local details, and manifests itself in various fields of physics. In solid-state physics, specific topological properties of the band structure, such as a band inversion, can for example robustly enforce the appearance of spin-polarized conducting states at the boundaries of the material, while its bulk remains insulating. The boundary states of these ‘topological insulators’ in fact provide a support system to encode information non-locally in ‘topological quantum bits’ robust to local perturbations. The emerging ‘topological quantum computation’ is as such an envisioned solution to decoherence problems in the realization of quantum computers. Despite immense theoretical and experimental efforts, the rise of these new materials has however been hampered by strong difficulties to observe robust and clear signatures of their predicted properties such as spin-polarization or perfect conductance.
These challenges strongly motivate my proposal to study two-dimensional topological insulators, and in particular explore the unknown dynamics of their topological edge states in normal and superconducting regimes. First it is possible to capture information both on charge and spin dynamics, and more clearly highlight the basic properties of topological edge states. Second, the dynamics reveals the effects of Coulomb interactions, an unexplored aspect that may explain the fragility of topological edge states. Finally, it enables the manipulation and characterization of quantum states on short time scales, relevant to quantum information processing. This project relies on the powerful toolbox offered by radiofrequency and current-correlations techniques and promises to open a new field of dynamical explorations of topological materials.
Max ERC Funding
1 499 940 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ChromTrace
Project Tracing epigenetic evolution of triple-negative breast cancer towards chemo-resistance
Researcher (PI) Celine VALLOT
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), LS4, ERC-2020-STG
Summary The emergence of resistance to chemotherapy and targeted therapies is a major challenge for the treatment of cancer. While several genetic mechanisms driving resistance processes have been discovered, non-genetic mechanisms have also been shown to contribute to drug resistance. Yet, our restricted understanding of epigenetic evolution has so far limited our ability to modulate resistance using epigenetic modifiers. With ChromTrace, our goal is to reconstruct and define the contribution of epigenetic evolution to chemo-resistance in triple-negative breast tumors. In this aggressive sub-type of breast cancer, chemotherapy is the standard of care, but chemo-resistance remains the major unmet clinical need. We will explore the heterogeneity of H3K27me3chromatin states - key determinant of cell identity - in tumor cells, study how they are transmitted and determine whether they are associated to the resistance phenotype.
Combining lineage tracing and targeted sequencing to our original single-cell chromatin profiling approach, we will reconstruct the dynamics of chromatin features over time in the context of genetic evolution. In parallel, using a live-cell microscopy reporter system, we will evaluate the association of recurrent chromatin features with the resistance phenotype and elucidate mechanisms of epigenetic tumor evolution. Our results on the heritability and plasticity of chromatin landscapes will have strong impact on our understanding of epigenetic evolution in cancer. Our long-term goal is to build on this integrated appreciation of molecular tumor evolution processes to propose novel therapeutic strategies to control resistance to chemotherapy. Finally, our approaches being applicable to any dynamic biological system, ChromTrace opens the perspective to study evolution of chromatin landscapes not only in other types of cancer and disease, but also during normal development.
Summary
The emergence of resistance to chemotherapy and targeted therapies is a major challenge for the treatment of cancer. While several genetic mechanisms driving resistance processes have been discovered, non-genetic mechanisms have also been shown to contribute to drug resistance. Yet, our restricted understanding of epigenetic evolution has so far limited our ability to modulate resistance using epigenetic modifiers. With ChromTrace, our goal is to reconstruct and define the contribution of epigenetic evolution to chemo-resistance in triple-negative breast tumors. In this aggressive sub-type of breast cancer, chemotherapy is the standard of care, but chemo-resistance remains the major unmet clinical need. We will explore the heterogeneity of H3K27me3chromatin states - key determinant of cell identity - in tumor cells, study how they are transmitted and determine whether they are associated to the resistance phenotype.
Combining lineage tracing and targeted sequencing to our original single-cell chromatin profiling approach, we will reconstruct the dynamics of chromatin features over time in the context of genetic evolution. In parallel, using a live-cell microscopy reporter system, we will evaluate the association of recurrent chromatin features with the resistance phenotype and elucidate mechanisms of epigenetic tumor evolution. Our results on the heritability and plasticity of chromatin landscapes will have strong impact on our understanding of epigenetic evolution in cancer. Our long-term goal is to build on this integrated appreciation of molecular tumor evolution processes to propose novel therapeutic strategies to control resistance to chemotherapy. Finally, our approaches being applicable to any dynamic biological system, ChromTrace opens the perspective to study evolution of chromatin landscapes not only in other types of cancer and disease, but also during normal development.
Max ERC Funding
1 500 000 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym CirQys
Project Circuit QED with hybrid electronic states
Researcher (PI) Takis Kontos
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary We propose to develop a new scheme for detecting and manipulating exotic states formed by combinations of conductors with different dimensionalities and/or electronic orders. For that purpose, we will use tools of cavity quantum electrodynamics to study in a very controlled way the interaction of light and this exotic matter.
Our experiments will be implemented with nanowires connected to normal, ferromagnetic or superconducting electrodes embedded in high finesse on-chip superconducting photonic cavities. The experimental technique proposed here will inaugurate a novel method for investigating the spectroscopy and the dynamics of tailored nano-systems.
During the project, we will focus on three key experiments. We will demonstrate the strong coupling between a single spin and cavity photons, bringing spin quantum bits a step closer to scalability. We will probe coherence in Cooper pair splitters using lasing and sub-radiance. Finally, we will probe the non-local nature of Majorana bound states predicted to appear at the edges of topological superconductors via their interaction with cavity photons.
Summary
We propose to develop a new scheme for detecting and manipulating exotic states formed by combinations of conductors with different dimensionalities and/or electronic orders. For that purpose, we will use tools of cavity quantum electrodynamics to study in a very controlled way the interaction of light and this exotic matter.
Our experiments will be implemented with nanowires connected to normal, ferromagnetic or superconducting electrodes embedded in high finesse on-chip superconducting photonic cavities. The experimental technique proposed here will inaugurate a novel method for investigating the spectroscopy and the dynamics of tailored nano-systems.
During the project, we will focus on three key experiments. We will demonstrate the strong coupling between a single spin and cavity photons, bringing spin quantum bits a step closer to scalability. We will probe coherence in Cooper pair splitters using lasing and sub-radiance. Finally, we will probe the non-local nature of Majorana bound states predicted to appear at the edges of topological superconductors via their interaction with cavity photons.
Max ERC Funding
1 456 608 €
Duration
Start date: 2013-02-01, End date: 2018-01-31