Project acronym AGNOSTIC
Project Actively Enhanced Cognition based Framework for Design of Complex Systems
Researcher (PI) Bjoern Ottersten
Host Institution (HI) UNIVERSITE DU LUXEMBOURG
Country Luxembourg
Call Details Advanced Grant (AdG), PE7, ERC-2016-ADG
Summary Parameterized mathematical models have been central to the understanding and design of communication, networking, and radar systems. However, they often lack the ability to model intricate interactions innate in complex systems. On the other hand, data-driven approaches do not need explicit mathematical models for data generation and have a wider applicability at the cost of flexibility. These approaches need labelled data, representing all the facets of the system interaction with the environment. With the aforementioned systems becoming increasingly complex with intricate interactions and operating in dynamic environments, the number of system configurations can be rather large leading to paucity of labelled data. Thus there are emerging networks of systems of critical importance whose cognition is not effectively covered by traditional approaches. AGNOSTIC uses the process of exploration through system probing and exploitation of observed data in an iterative manner drawing upon traditional model-based approaches and data-driven discriminative learning to enhance functionality, performance, and robustness through the notion of active cognition. AGNOSTIC clearly departs from a passive assimilation of data and aims to formalize the exploitation/exploration framework in dynamic environments. The development of this framework in three applications areas is central to AGNOSTIC. The project aims to provide active cognition in radar to learn the environment and other active systems to ensure situational awareness and coexistence; to apply active probing in radio access networks to infer network behaviour towards spectrum sharing and self-configuration; and to learn and adapt to user demand for content distribution in caching networks, drastically improving network efficiency. Although these cognitive systems interact with the environment in very different ways, sufficient abstraction allows cross-fertilization of insights and approaches motivating their joint treatment.
Summary
Parameterized mathematical models have been central to the understanding and design of communication, networking, and radar systems. However, they often lack the ability to model intricate interactions innate in complex systems. On the other hand, data-driven approaches do not need explicit mathematical models for data generation and have a wider applicability at the cost of flexibility. These approaches need labelled data, representing all the facets of the system interaction with the environment. With the aforementioned systems becoming increasingly complex with intricate interactions and operating in dynamic environments, the number of system configurations can be rather large leading to paucity of labelled data. Thus there are emerging networks of systems of critical importance whose cognition is not effectively covered by traditional approaches. AGNOSTIC uses the process of exploration through system probing and exploitation of observed data in an iterative manner drawing upon traditional model-based approaches and data-driven discriminative learning to enhance functionality, performance, and robustness through the notion of active cognition. AGNOSTIC clearly departs from a passive assimilation of data and aims to formalize the exploitation/exploration framework in dynamic environments. The development of this framework in three applications areas is central to AGNOSTIC. The project aims to provide active cognition in radar to learn the environment and other active systems to ensure situational awareness and coexistence; to apply active probing in radio access networks to infer network behaviour towards spectrum sharing and self-configuration; and to learn and adapt to user demand for content distribution in caching networks, drastically improving network efficiency. Although these cognitive systems interact with the environment in very different ways, sufficient abstraction allows cross-fertilization of insights and approaches motivating their joint treatment.
Max ERC Funding
2 499 595 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym CLOUDMAP
Project Cloud Computing via Homomorphic Encryption and Multilinear Maps
Researcher (PI) Jean-Sebastien Coron
Host Institution (HI) UNIVERSITE DU LUXEMBOURG
Country Luxembourg
Call Details Advanced Grant (AdG), PE6, ERC-2017-ADG
Summary The past thirty years have seen cryptography move from arcane to commonplace: Internet, mobile phones, banking system, etc. Homomorphic cryptography now offers the tantalizing goal of being able to process sensitive information in encrypted form, without needing to compromise on the privacy and security of the citizens and organizations that provide the input data. More recently, cryptographic multilinear maps have revolutionized cryptography with the emergence of indistinguishability obfuscation (iO), which in theory can been used to realize numerous advanced cryptographic functionalities that previously seemed beyond reach. However the security of multilinear maps is still poorly understood, and many iO schemes have been broken; moreover all constructions of iO are currently unpractical.
The goal of the CLOUDMAP project is to make these advanced cryptographic tasks usable in practice, so that citizens do not have to compromise on the privacy and security of their input data. This goal can only be achieved by considering the mathematical foundations of these primitives, working "from first principles", rather than focusing on premature optimizations. To achieve this goal, our first objective will be to better understand the security of the underlying primitives of multilinear maps and iO schemes. Our second objective will be to develop new approaches to significantly improve their efficiency. Our third objective will be to build applications of multilinear maps and iO that can be implemented in practice.
Summary
The past thirty years have seen cryptography move from arcane to commonplace: Internet, mobile phones, banking system, etc. Homomorphic cryptography now offers the tantalizing goal of being able to process sensitive information in encrypted form, without needing to compromise on the privacy and security of the citizens and organizations that provide the input data. More recently, cryptographic multilinear maps have revolutionized cryptography with the emergence of indistinguishability obfuscation (iO), which in theory can been used to realize numerous advanced cryptographic functionalities that previously seemed beyond reach. However the security of multilinear maps is still poorly understood, and many iO schemes have been broken; moreover all constructions of iO are currently unpractical.
The goal of the CLOUDMAP project is to make these advanced cryptographic tasks usable in practice, so that citizens do not have to compromise on the privacy and security of their input data. This goal can only be achieved by considering the mathematical foundations of these primitives, working "from first principles", rather than focusing on premature optimizations. To achieve this goal, our first objective will be to better understand the security of the underlying primitives of multilinear maps and iO schemes. Our second objective will be to develop new approaches to significantly improve their efficiency. Our third objective will be to build applications of multilinear maps and iO that can be implemented in practice.
Max ERC Funding
2 491 266 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym PROCONTRA
Project Smart-Contract Protocols: Theory for Applications
Researcher (PI) Stefan Michal DZIEMBOWSKI
Host Institution (HI) UNIWERSYTET WARSZAWSKI
Country Poland
Call Details Advanced Grant (AdG), PE6, ERC-2019-ADG
Summary Smart contracts are formal agreements that take the form of computer programs. They are typically written down, and automatically executed, on blockchains. Smart-contract protocols are algorithms that describe how these contracts operate in multiparty settings. Due to the large number of potential applications, interest in this field has exploded in the last few years. Also, the PI has generated important results through his work in this area. The ambitious goal of PROCONTRA is to transfigure this emerging field into a mature science. Our main research hypothesis is that smart-contract protocols will be used in real life and many of them will strongly rely on advanced cryptographic techniques and will need to be developed using modeling methods from theoretical cryptography.
We will work in this direction by proposing new solutions in this area, providing formal models and security proofs. Given the importance of these protocols, it is crucial to fully analyze their security before they are deployed in real life. Therefore, the first pillar of this project is to design a complete security model for analyzing them. The second pillar is to propose new smart-contract protocols and to extend the existing ones. Our protocols will be proven secure in the model we propose in the first pillar. This will be done using traditional “pen-and-paper” methods. However, the most important proofs will also be machine-checked using proof assistants. On a more theoretical side, we will also work on characterizing what tasks are in general achievable using smart contracts, and under what assumptions. Throughout the project, we will closely interact with the smart-contract practitioners, and with the industry, in order to understand what are the practically-relevant problems in this field and to ensure that the project’s outcome will have an impact beyond academia. This will also take a form of participation in the standardization efforts in this area.
Summary
Smart contracts are formal agreements that take the form of computer programs. They are typically written down, and automatically executed, on blockchains. Smart-contract protocols are algorithms that describe how these contracts operate in multiparty settings. Due to the large number of potential applications, interest in this field has exploded in the last few years. Also, the PI has generated important results through his work in this area. The ambitious goal of PROCONTRA is to transfigure this emerging field into a mature science. Our main research hypothesis is that smart-contract protocols will be used in real life and many of them will strongly rely on advanced cryptographic techniques and will need to be developed using modeling methods from theoretical cryptography.
We will work in this direction by proposing new solutions in this area, providing formal models and security proofs. Given the importance of these protocols, it is crucial to fully analyze their security before they are deployed in real life. Therefore, the first pillar of this project is to design a complete security model for analyzing them. The second pillar is to propose new smart-contract protocols and to extend the existing ones. Our protocols will be proven secure in the model we propose in the first pillar. This will be done using traditional “pen-and-paper” methods. However, the most important proofs will also be machine-checked using proof assistants. On a more theoretical side, we will also work on characterizing what tasks are in general achievable using smart contracts, and under what assumptions. Throughout the project, we will closely interact with the smart-contract practitioners, and with the industry, in order to understand what are the practically-relevant problems in this field and to ensure that the project’s outcome will have an impact beyond academia. This will also take a form of participation in the standardization efforts in this area.
Max ERC Funding
2 496 370 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym QOLAPS
Project Quantum resources: conceptuals and applications
Researcher (PI) Ryszard Horodecki
Host Institution (HI) UNIWERSYTET GDANSKI
Country Poland
Call Details Advanced Grant (AdG), PE2, ERC-2011-ADG_20110209
Summary "The studies of quantum resources - entanglement (E) and non-locality (NL) carried out over the last decade have broadened horizons of our conceptual understanding of Nature and at the same time opened unprecedented possibilities for practical applications.
The project aims at taking advantage of the most recent discoveries to understand the ultimate power and find novel applications of these resources. The main objectives are: E) to study novel entanglement-induced non-additivity effects in quantum communication and application of mixed state entanglement to quantum metrology NL) to recognize the influence of information causality on the power of quantum non-locality and verify the power of non-locality, and more generally – contextuality – for quantum computational speed-up. In particular, it is planned: E) to find new non-additivities by providing explicit constructions of bipartite channels, broadcast channels and quantum networks; to demonstrate experimentally non-additivity effects; to provide experimentally friendly entanglement measures in quantum networks; to analyse entanglement-enhanced metrology in presence of decoherence NL) to determine to what extent information-causality reproduces quantum mechanics; to generalize information causality to multipartite systems; to provide new fundamental information-theoretical principles behind quantum mechanics; to quantify and classify contextuality; to design and analyse multiparty non-local systems independently of quantum mechanics; to verify their usefulness for communication and computational tasks.
We shall extensively exploit multiple interrelations between these two aspects of quantum physics. The results of theoretical investigations will be implemented in labs by experimental partners. In particular, we plan pioneering implementations of quantum channel non-additivity effects. The proposed research lines will bring ground-breaking results for quantum information processing."
Summary
"The studies of quantum resources - entanglement (E) and non-locality (NL) carried out over the last decade have broadened horizons of our conceptual understanding of Nature and at the same time opened unprecedented possibilities for practical applications.
The project aims at taking advantage of the most recent discoveries to understand the ultimate power and find novel applications of these resources. The main objectives are: E) to study novel entanglement-induced non-additivity effects in quantum communication and application of mixed state entanglement to quantum metrology NL) to recognize the influence of information causality on the power of quantum non-locality and verify the power of non-locality, and more generally – contextuality – for quantum computational speed-up. In particular, it is planned: E) to find new non-additivities by providing explicit constructions of bipartite channels, broadcast channels and quantum networks; to demonstrate experimentally non-additivity effects; to provide experimentally friendly entanglement measures in quantum networks; to analyse entanglement-enhanced metrology in presence of decoherence NL) to determine to what extent information-causality reproduces quantum mechanics; to generalize information causality to multipartite systems; to provide new fundamental information-theoretical principles behind quantum mechanics; to quantify and classify contextuality; to design and analyse multiparty non-local systems independently of quantum mechanics; to verify their usefulness for communication and computational tasks.
We shall extensively exploit multiple interrelations between these two aspects of quantum physics. The results of theoretical investigations will be implemented in labs by experimental partners. In particular, we plan pioneering implementations of quantum channel non-additivity effects. The proposed research lines will bring ground-breaking results for quantum information processing."
Max ERC Funding
1 970 380 €
Duration
Start date: 2012-01-01, End date: 2016-12-31