Project acronym CLOUDMAP
Project Cloud Computing via Homomorphic Encryption and Multilinear Maps
Researcher (PI) Jean-Sebastien Coron
Host Institution (HI) UNIVERSITE DU LUXEMBOURG
Country Luxembourg
Call Details Advanced Grant (AdG), PE6, ERC-2017-ADG
Summary The past thirty years have seen cryptography move from arcane to commonplace: Internet, mobile phones, banking system, etc. Homomorphic cryptography now offers the tantalizing goal of being able to process sensitive information in encrypted form, without needing to compromise on the privacy and security of the citizens and organizations that provide the input data. More recently, cryptographic multilinear maps have revolutionized cryptography with the emergence of indistinguishability obfuscation (iO), which in theory can been used to realize numerous advanced cryptographic functionalities that previously seemed beyond reach. However the security of multilinear maps is still poorly understood, and many iO schemes have been broken; moreover all constructions of iO are currently unpractical.
The goal of the CLOUDMAP project is to make these advanced cryptographic tasks usable in practice, so that citizens do not have to compromise on the privacy and security of their input data. This goal can only be achieved by considering the mathematical foundations of these primitives, working "from first principles", rather than focusing on premature optimizations. To achieve this goal, our first objective will be to better understand the security of the underlying primitives of multilinear maps and iO schemes. Our second objective will be to develop new approaches to significantly improve their efficiency. Our third objective will be to build applications of multilinear maps and iO that can be implemented in practice.
Summary
The past thirty years have seen cryptography move from arcane to commonplace: Internet, mobile phones, banking system, etc. Homomorphic cryptography now offers the tantalizing goal of being able to process sensitive information in encrypted form, without needing to compromise on the privacy and security of the citizens and organizations that provide the input data. More recently, cryptographic multilinear maps have revolutionized cryptography with the emergence of indistinguishability obfuscation (iO), which in theory can been used to realize numerous advanced cryptographic functionalities that previously seemed beyond reach. However the security of multilinear maps is still poorly understood, and many iO schemes have been broken; moreover all constructions of iO are currently unpractical.
The goal of the CLOUDMAP project is to make these advanced cryptographic tasks usable in practice, so that citizens do not have to compromise on the privacy and security of their input data. This goal can only be achieved by considering the mathematical foundations of these primitives, working "from first principles", rather than focusing on premature optimizations. To achieve this goal, our first objective will be to better understand the security of the underlying primitives of multilinear maps and iO schemes. Our second objective will be to develop new approaches to significantly improve their efficiency. Our third objective will be to build applications of multilinear maps and iO that can be implemented in practice.
Max ERC Funding
2 491 266 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym PROCONTRA
Project Smart-Contract Protocols: Theory for Applications
Researcher (PI) Stefan Michal DZIEMBOWSKI
Host Institution (HI) UNIWERSYTET WARSZAWSKI
Country Poland
Call Details Advanced Grant (AdG), PE6, ERC-2019-ADG
Summary Smart contracts are formal agreements that take the form of computer programs. They are typically written down, and automatically executed, on blockchains. Smart-contract protocols are algorithms that describe how these contracts operate in multiparty settings. Due to the large number of potential applications, interest in this field has exploded in the last few years. Also, the PI has generated important results through his work in this area. The ambitious goal of PROCONTRA is to transfigure this emerging field into a mature science. Our main research hypothesis is that smart-contract protocols will be used in real life and many of them will strongly rely on advanced cryptographic techniques and will need to be developed using modeling methods from theoretical cryptography.
We will work in this direction by proposing new solutions in this area, providing formal models and security proofs. Given the importance of these protocols, it is crucial to fully analyze their security before they are deployed in real life. Therefore, the first pillar of this project is to design a complete security model for analyzing them. The second pillar is to propose new smart-contract protocols and to extend the existing ones. Our protocols will be proven secure in the model we propose in the first pillar. This will be done using traditional “pen-and-paper” methods. However, the most important proofs will also be machine-checked using proof assistants. On a more theoretical side, we will also work on characterizing what tasks are in general achievable using smart contracts, and under what assumptions. Throughout the project, we will closely interact with the smart-contract practitioners, and with the industry, in order to understand what are the practically-relevant problems in this field and to ensure that the project’s outcome will have an impact beyond academia. This will also take a form of participation in the standardization efforts in this area.
Summary
Smart contracts are formal agreements that take the form of computer programs. They are typically written down, and automatically executed, on blockchains. Smart-contract protocols are algorithms that describe how these contracts operate in multiparty settings. Due to the large number of potential applications, interest in this field has exploded in the last few years. Also, the PI has generated important results through his work in this area. The ambitious goal of PROCONTRA is to transfigure this emerging field into a mature science. Our main research hypothesis is that smart-contract protocols will be used in real life and many of them will strongly rely on advanced cryptographic techniques and will need to be developed using modeling methods from theoretical cryptography.
We will work in this direction by proposing new solutions in this area, providing formal models and security proofs. Given the importance of these protocols, it is crucial to fully analyze their security before they are deployed in real life. Therefore, the first pillar of this project is to design a complete security model for analyzing them. The second pillar is to propose new smart-contract protocols and to extend the existing ones. Our protocols will be proven secure in the model we propose in the first pillar. This will be done using traditional “pen-and-paper” methods. However, the most important proofs will also be machine-checked using proof assistants. On a more theoretical side, we will also work on characterizing what tasks are in general achievable using smart contracts, and under what assumptions. Throughout the project, we will closely interact with the smart-contract practitioners, and with the industry, in order to understand what are the practically-relevant problems in this field and to ensure that the project’s outcome will have an impact beyond academia. This will also take a form of participation in the standardization efforts in this area.
Max ERC Funding
2 496 370 €
Duration
Start date: 2021-01-01, End date: 2025-12-31