Project acronym ACTINONSRF
Project MAL: an actin-regulated SRF transcriptional coactivator
Researcher (PI) Richard Treisman
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Country United Kingdom
Call Details Advanced Grant (AdG), LS1, ERC-2010-AdG_20100317
Summary MAL: an actin-regulated SRF transcriptional coactivator
Recent years have seen a revitalised interest in the role of actin in nuclear processes, but the molecular mechanisms involved remain largely unexplored. We will elucidate the molecular basis for the actin-based control of the SRF transcriptional coactivator, MAL. SRF controls transcription through two families of coactivators, the actin-binding MRTFs (MAL, Mkl2), which couple its activity to cytoskeletal dynamics, and the ERK-regulated TCFs (Elk-1, SAP-1, Net). MAL subcellular localisation and transcriptional activity responds to signal-induced changes in G-actin concentration, which are sensed by its actin-binding N-terminal RPEL domain. Members of a second family of RPEL proteins, the Phactrs, also exhibit actin-regulated nucleocytoplasmic shuttling. The proposal addresses the following novel features of actin biology:
¿ Actin as a transcriptional regulator
¿ Actin as a signalling molecule
¿ Actin-binding proteins as targets for regulation by actin, rather than regulators of actin function
We will analyse the sequences and proteins involved in actin-regulated nucleocytoplasmic shuttling, using structural biology and biochemistry to analyse its control by changes in actin-RPEL domain interactions. We will characterise the dynamics of shuttling, and develop reporters for changes in actin-MAL interaction for analysis of pathway activation in vivo. We will identify genes controlling MAL itself, and the balance between the nuclear and cytoplasmic actin pools. The mechanism by which actin represses transcriptional activation by MAL in the nucleus, and its relation to MAL phosphorylation, will be elucidated. Finally, we will map MRTF and TCF cofactor recruitment to SRF targets on a genome-wide scale, and identify the steps in transcription controlled by actin-MAL interaction.
Summary
MAL: an actin-regulated SRF transcriptional coactivator
Recent years have seen a revitalised interest in the role of actin in nuclear processes, but the molecular mechanisms involved remain largely unexplored. We will elucidate the molecular basis for the actin-based control of the SRF transcriptional coactivator, MAL. SRF controls transcription through two families of coactivators, the actin-binding MRTFs (MAL, Mkl2), which couple its activity to cytoskeletal dynamics, and the ERK-regulated TCFs (Elk-1, SAP-1, Net). MAL subcellular localisation and transcriptional activity responds to signal-induced changes in G-actin concentration, which are sensed by its actin-binding N-terminal RPEL domain. Members of a second family of RPEL proteins, the Phactrs, also exhibit actin-regulated nucleocytoplasmic shuttling. The proposal addresses the following novel features of actin biology:
¿ Actin as a transcriptional regulator
¿ Actin as a signalling molecule
¿ Actin-binding proteins as targets for regulation by actin, rather than regulators of actin function
We will analyse the sequences and proteins involved in actin-regulated nucleocytoplasmic shuttling, using structural biology and biochemistry to analyse its control by changes in actin-RPEL domain interactions. We will characterise the dynamics of shuttling, and develop reporters for changes in actin-MAL interaction for analysis of pathway activation in vivo. We will identify genes controlling MAL itself, and the balance between the nuclear and cytoplasmic actin pools. The mechanism by which actin represses transcriptional activation by MAL in the nucleus, and its relation to MAL phosphorylation, will be elucidated. Finally, we will map MRTF and TCF cofactor recruitment to SRF targets on a genome-wide scale, and identify the steps in transcription controlled by actin-MAL interaction.
Max ERC Funding
1 889 995 €
Duration
Start date: 2011-10-01, End date: 2017-09-30
Project acronym AVIAN DIMORPHISM
Project The genomic and transcriptomic locus of sex-specific selection in birds
Researcher (PI) Judith Elizabeth Mank
Host Institution (HI) University College London
Country United Kingdom
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary It has long been understood that genes contribute to phenotypes that are then the basis of selection. However, the nature and process of this relationship remains largely theoretical, and the relative contribution of change in gene expression and coding sequence to phenotypic diversification is unclear. The aim of this proposal is to fuse information about sexually dimorphic phenotypes, the mating systems and sexually antagonistic selective agents that shape sexual dimorphism, and the sex-biased gene expression patterns that encode sexual dimorphisms, in order to create a cohesive integrated understanding of the relationship between evolution, the genome, and the animal form. The primary approach of this project is to harnesses emergent DNA sequencing technologies in order to measure evolutionary change in gene expression and coding sequence in response to different sex-specific selection regimes in a clade of birds with divergent mating systems. Sex-specific selection pressures arise in large part as a consequence of mating system, however males and females share nearly identical genomes, especially in the vertebrates where the sex chromosomes house very small proportions of the overall transcriptome. This single shared genome creates sex-specific phenotypes via different gene expression levels in females and males, and these sex-biased genes connect sexual dimorphisms, and the sexually antagonistic selection pressures that shape them, with the regions of the genome that encode them.
The Galloanserae (fowl and waterfowl) will be used to in the proposed project, as this clade combines the necessary requirements of both variation in mating systems and a well-conserved reference genome (chicken). The study species selected from within the Galloanserae for the proposal exhibit a range of sexual dimorphism and sperm competition, and this will be exploited with next generation (454 and Illumina) genomic and transcriptomic data to study the gene expression patterns that underlie sexual dimorphisms, and the evolutionary pressures acting on them. This work will be complemented by the development of mathematical models of sex-specific evolution that will be tested against the gene expression and gene sequence data in order to understand the mechanisms by which sex-specific selection regimes, arising largely from mating systems, shape the phenotype via the genome.
Summary
It has long been understood that genes contribute to phenotypes that are then the basis of selection. However, the nature and process of this relationship remains largely theoretical, and the relative contribution of change in gene expression and coding sequence to phenotypic diversification is unclear. The aim of this proposal is to fuse information about sexually dimorphic phenotypes, the mating systems and sexually antagonistic selective agents that shape sexual dimorphism, and the sex-biased gene expression patterns that encode sexual dimorphisms, in order to create a cohesive integrated understanding of the relationship between evolution, the genome, and the animal form. The primary approach of this project is to harnesses emergent DNA sequencing technologies in order to measure evolutionary change in gene expression and coding sequence in response to different sex-specific selection regimes in a clade of birds with divergent mating systems. Sex-specific selection pressures arise in large part as a consequence of mating system, however males and females share nearly identical genomes, especially in the vertebrates where the sex chromosomes house very small proportions of the overall transcriptome. This single shared genome creates sex-specific phenotypes via different gene expression levels in females and males, and these sex-biased genes connect sexual dimorphisms, and the sexually antagonistic selection pressures that shape them, with the regions of the genome that encode them.
The Galloanserae (fowl and waterfowl) will be used to in the proposed project, as this clade combines the necessary requirements of both variation in mating systems and a well-conserved reference genome (chicken). The study species selected from within the Galloanserae for the proposal exhibit a range of sexual dimorphism and sperm competition, and this will be exploited with next generation (454 and Illumina) genomic and transcriptomic data to study the gene expression patterns that underlie sexual dimorphisms, and the evolutionary pressures acting on them. This work will be complemented by the development of mathematical models of sex-specific evolution that will be tested against the gene expression and gene sequence data in order to understand the mechanisms by which sex-specific selection regimes, arising largely from mating systems, shape the phenotype via the genome.
Max ERC Funding
1 350 804 €
Duration
Start date: 2011-01-01, End date: 2016-07-31
Project acronym BLUELEAF
Project The adaptive advantages, evolution and development of iridescence in leaves
Researcher (PI) Heather Whitney
Host Institution (HI) UNIVERSITY OF BRISTOL
Country United Kingdom
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Iridescence is a form of structural colour which changes hue according to the angle from which it is viewed. Blue iridescence caused by multilayers has been described on the leaves of taxonomically diverse species such as the lycophyte Selaginella uncinata and the angiosperm Begonia pavonina. While much is known about the role of leaf pigment colour, the adaptive role of leaf iridescence is unknown. Hypotheses have been put forward including 1) iridescence acts as disruptive camouflage against herbivores 2) it enhances light sensing and capture in low light conditions 3) it is a photoprotective mechanism to protect shade-adapted plants against high light levels. These hypotheses are not mutually exclusive: each function may be of varying importance in different environments. To understand any one function, we need a interdisciplinary approach considering all three potential functions and their interactions. The objective of my research would be to test these hypotheses, using animal behavioural and plant physiological methods, to determine the functions of leaf iridescence and how the plant has adapted to the reflection of developmentally vital wavelengths. Use of molecular and bioinformatics methods will elucidate the genes that control the production of this potentially multifunctional optical phenomenon. This research will provide a pioneering study into the generation, developmental impact and adaptive significance of iridescence in leaves. It would also answer questions at the frontiers of several fields including those of plant evolution, insect vision, methods of camouflage, the generation and role of animal iridescence, and could also potentially inspire synthetic biomimetic applications.
Summary
Iridescence is a form of structural colour which changes hue according to the angle from which it is viewed. Blue iridescence caused by multilayers has been described on the leaves of taxonomically diverse species such as the lycophyte Selaginella uncinata and the angiosperm Begonia pavonina. While much is known about the role of leaf pigment colour, the adaptive role of leaf iridescence is unknown. Hypotheses have been put forward including 1) iridescence acts as disruptive camouflage against herbivores 2) it enhances light sensing and capture in low light conditions 3) it is a photoprotective mechanism to protect shade-adapted plants against high light levels. These hypotheses are not mutually exclusive: each function may be of varying importance in different environments. To understand any one function, we need a interdisciplinary approach considering all three potential functions and their interactions. The objective of my research would be to test these hypotheses, using animal behavioural and plant physiological methods, to determine the functions of leaf iridescence and how the plant has adapted to the reflection of developmentally vital wavelengths. Use of molecular and bioinformatics methods will elucidate the genes that control the production of this potentially multifunctional optical phenomenon. This research will provide a pioneering study into the generation, developmental impact and adaptive significance of iridescence in leaves. It would also answer questions at the frontiers of several fields including those of plant evolution, insect vision, methods of camouflage, the generation and role of animal iridescence, and could also potentially inspire synthetic biomimetic applications.
Max ERC Funding
1 118 378 €
Duration
Start date: 2011-01-01, End date: 2016-07-31
Project acronym COSMIWAY
Project From the Milky Way to the cosmic large-scale structure
Researcher (PI) Carlos Silvestre Frenk
Host Institution (HI) UNIVERSITY OF DURHAM
Country United Kingdom
Call Details Advanced Grant (AdG), PE9, ERC-2010-AdG_20100224
Summary Wide field panoramic telescopes will become a major force in astronomy over the next decade. They will address a rich set of scientific problems, from ``killer asteroids'' to the cosmic dark energy. Pan-STARRS-1 (PS1), built by the University of Hawaii, is the first of this new generation of telescopes. European astronomers in Germany and the UK, including in the PI's host institute, make up a large fraction of the Science Consortium that, over the next 4 years, will exploit the data. This proposal is focused on the use of PS1 for cosmology. I propose a programme that combines state-of-the-art cosmological simulations and modelling with high-level analyses of the data. The goal is to test core assumptions of the standard cosmogonic model, LCDM, on scales and at epochs where it has not been tested before and where it can, in principle, be ruled out. At the same time, these tests will advance our understanding of the main constituents of our universe (dark matter and dark energy) and of the processes of galaxy formation and evolution. Two types of structure at opposite ends of the cosmological scale, the Milky Way and the large-scale distribution of galaxies at redshifts z<1.5, are ideally suited to this purpose. Studies of the Milky Way will test LCDM predictions for the hierarchical assembly of galaxies and the structure of their dark matter halos. Studies of the galaxy distribution will test LCDM predictions for the growth of structure and the connection between galaxies and dark matter. To link theory and data, I will construct mock catalogues using very large cosmological simulations and sophisticated modelling techniques. These catalogues will have a much broader applicability that just PS1 and I will make them publicly available using e-science techniques.
Summary
Wide field panoramic telescopes will become a major force in astronomy over the next decade. They will address a rich set of scientific problems, from ``killer asteroids'' to the cosmic dark energy. Pan-STARRS-1 (PS1), built by the University of Hawaii, is the first of this new generation of telescopes. European astronomers in Germany and the UK, including in the PI's host institute, make up a large fraction of the Science Consortium that, over the next 4 years, will exploit the data. This proposal is focused on the use of PS1 for cosmology. I propose a programme that combines state-of-the-art cosmological simulations and modelling with high-level analyses of the data. The goal is to test core assumptions of the standard cosmogonic model, LCDM, on scales and at epochs where it has not been tested before and where it can, in principle, be ruled out. At the same time, these tests will advance our understanding of the main constituents of our universe (dark matter and dark energy) and of the processes of galaxy formation and evolution. Two types of structure at opposite ends of the cosmological scale, the Milky Way and the large-scale distribution of galaxies at redshifts z<1.5, are ideally suited to this purpose. Studies of the Milky Way will test LCDM predictions for the hierarchical assembly of galaxies and the structure of their dark matter halos. Studies of the galaxy distribution will test LCDM predictions for the growth of structure and the connection between galaxies and dark matter. To link theory and data, I will construct mock catalogues using very large cosmological simulations and sophisticated modelling techniques. These catalogues will have a much broader applicability that just PS1 and I will make them publicly available using e-science techniques.
Max ERC Funding
2 266 850 €
Duration
Start date: 2011-05-01, End date: 2017-04-30
Project acronym COSMOLAB
Project Laboratory simulation of cosmological magnetic fields
Researcher (PI) Gianluca Gregori
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary The advent of high-power laser systems in the past two decades has opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, yet preserving the essential physics. This is due to the invariance of the equations of ideal magneto-hydrodynamics (MHD) to a class of self-similar transformations. In this proposal, we will apply these scaling laws to investigate the dynamics of the high Mach number shocks arising during the formation of the large-scale structure of the Universe. Although at the beginning of cosmic evolution matter was nearly homogenously distributed, today, as a result of gravitational instability, it forms a web-like structure made of filaments and clusters. Gas continues to accrete supersonically onto these collapsed structures, thus producing high Mach number shocks. It has been recently proposed that generation of magnetic fields can occur at these cosmic shocks on a cosmologically fast timescale via a Weibel-like instability, thus providing an appealing explanation to the ubiquitous magnetization of the Universe. Our proposal will thus provide the first experimental evidence of such mechanisms. We plan to measure the self-generated magnetic fields from laboratory shock waves using a novel combination of electron deflectometry, Faraday rotation measurements using THz lasers, and dB/dt probes. The proposed investigation on the generation of magnetic fields at shocks via plasma instabilities bears important general consequences. First, it will shed light on the origin of cosmic magnetic fields. Second, it would have a tremendous impact on one of the greatest puzzles of high energy astrophysics, the origin of Ultra High Energy Cosmic Rays. We plan to assess the role of charged particle acceleration via collisionless shocks in the amplification of the magnetic field as well as measure the spectrum of such accelerated particles. The experimental work will be carried both at Oxford U and at laser facilities.
Summary
The advent of high-power laser systems in the past two decades has opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, yet preserving the essential physics. This is due to the invariance of the equations of ideal magneto-hydrodynamics (MHD) to a class of self-similar transformations. In this proposal, we will apply these scaling laws to investigate the dynamics of the high Mach number shocks arising during the formation of the large-scale structure of the Universe. Although at the beginning of cosmic evolution matter was nearly homogenously distributed, today, as a result of gravitational instability, it forms a web-like structure made of filaments and clusters. Gas continues to accrete supersonically onto these collapsed structures, thus producing high Mach number shocks. It has been recently proposed that generation of magnetic fields can occur at these cosmic shocks on a cosmologically fast timescale via a Weibel-like instability, thus providing an appealing explanation to the ubiquitous magnetization of the Universe. Our proposal will thus provide the first experimental evidence of such mechanisms. We plan to measure the self-generated magnetic fields from laboratory shock waves using a novel combination of electron deflectometry, Faraday rotation measurements using THz lasers, and dB/dt probes. The proposed investigation on the generation of magnetic fields at shocks via plasma instabilities bears important general consequences. First, it will shed light on the origin of cosmic magnetic fields. Second, it would have a tremendous impact on one of the greatest puzzles of high energy astrophysics, the origin of Ultra High Energy Cosmic Rays. We plan to assess the role of charged particle acceleration via collisionless shocks in the amplification of the magnetic field as well as measure the spectrum of such accelerated particles. The experimental work will be carried both at Oxford U and at laser facilities.
Max ERC Funding
1 119 690 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CRIPTON
Project Role of ncRNAs in Chromatin and Transcription
Researcher (PI) Tony Kouzarides
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), LS1, ERC-2010-AdG_20100317
Summary The human genome is highly transcribed, with over 90% of sequences contributing to the production of RNA. The function of the vast majority of these RNAs is unknown. Evidence over many years has revealed that transcription factors and chromatin regulators are associated with a variety of non-coding (nc)RNAs, but their function remains largely unknown. There are a few cases where a role has been ascribed for ncRNAs in transcription, but no clear mechanistic insight has been defined yet. We predict that many of the newly identified ncRNAs emanating from the genome will play a role in transcriptional processes. We intend to identify and characterise such ncRNAs. This will take place in two phases. In the first phase we will use biochemical approaches to identify ncRNAs involved in the regulation of chromatin and transcription. Our investigations will focus on proteins leading to the induction of pluripotency and oncogenesis. ncRNAs associated with such proteins will be identified using targeted screens. In the second phase, the importance of these RNAs in determining pluripotency and oncogenesis will be analysed. In addition, a variety of molecular approaches will be used to investigate the mechanism by which these ncRNAs regulate the function of the proteins or complexes they associate with. One particular hypothesis we will explore is that such ncRNAs play a role in guiding proteins to DNA sequences, via the formation of RNA/DNA triplexes. This concerted and focused analysis will provide mechanistic insights into the functions of ncRNAs in transcriptional regulation and validate their role in key biological processes. The identification of such new ncRNA-regulated pathways may open up new avenues for therapeutic intervention.
Summary
The human genome is highly transcribed, with over 90% of sequences contributing to the production of RNA. The function of the vast majority of these RNAs is unknown. Evidence over many years has revealed that transcription factors and chromatin regulators are associated with a variety of non-coding (nc)RNAs, but their function remains largely unknown. There are a few cases where a role has been ascribed for ncRNAs in transcription, but no clear mechanistic insight has been defined yet. We predict that many of the newly identified ncRNAs emanating from the genome will play a role in transcriptional processes. We intend to identify and characterise such ncRNAs. This will take place in two phases. In the first phase we will use biochemical approaches to identify ncRNAs involved in the regulation of chromatin and transcription. Our investigations will focus on proteins leading to the induction of pluripotency and oncogenesis. ncRNAs associated with such proteins will be identified using targeted screens. In the second phase, the importance of these RNAs in determining pluripotency and oncogenesis will be analysed. In addition, a variety of molecular approaches will be used to investigate the mechanism by which these ncRNAs regulate the function of the proteins or complexes they associate with. One particular hypothesis we will explore is that such ncRNAs play a role in guiding proteins to DNA sequences, via the formation of RNA/DNA triplexes. This concerted and focused analysis will provide mechanistic insights into the functions of ncRNAs in transcriptional regulation and validate their role in key biological processes. The identification of such new ncRNA-regulated pathways may open up new avenues for therapeutic intervention.
Max ERC Funding
2 141 470 €
Duration
Start date: 2011-05-01, End date: 2017-04-30
Project acronym CROSSROADS
Project Crossroads of empires: archaeology, material culture and socio-political relationships in West Africa
Researcher (PI) Anne Claire Haour
Host Institution (HI) UNIVERSITY OF EAST ANGLIA
Country United Kingdom
Call Details Starting Grant (StG), SH6, ERC-2010-StG_20091209
Summary Knowledge of the last 1000 years in the West African Sahel comes largely from historical sources, which say that many regions were ruled by vast polities.
The aim of my archaeological project is to seize how, in fact, lhe 'empires' of this region structured the landscape, and the movemenl of peoples, ideas, and
things, with a focus on the period AD 1200-1850. Is 'empire' really a useful term? I will confront historical evidence with archaeological data from one area at
the intersection of several polities: the dallols in Niger. This area is rich in remains, said to result from population movements and processes of religious and
political change, but these remains have been only briefly described so far. As this region is a key area of migrations and cross-influences, it is the ideal
'laboratory' for exploring the materialisation of contacts and boundaries, through a mapping of material culture distributions.
My project will approach these sites holistically, carrying out archaeological regional survey and prospection. Excavation will indicate chronology and cultural
affiliation. At lhe same time, I will take an interdisciplinary approach, using anthropological and oral-historical enquiries to obtain background information to
test hypotheses generated by the archaeological data. Enquiries will assess how material culture can show group belonging and population shifts, and
examine the role of individuals called 'technical specialists'. This will help solve the current impasse in our understanding of vast empires which, though they
are historically known, remain poorly understood.
My project will not just improve our knowledge of an almost-unknown part of the world, but thanks to its geographical location, interdisciplinary nature and
strong thematic framework, open up avenues of thinking about the relalion between archaeological and historical data, the mediation of relations through
artefacts, and the archaeology of empires, all widely-relevant research issues
Summary
Knowledge of the last 1000 years in the West African Sahel comes largely from historical sources, which say that many regions were ruled by vast polities.
The aim of my archaeological project is to seize how, in fact, lhe 'empires' of this region structured the landscape, and the movemenl of peoples, ideas, and
things, with a focus on the period AD 1200-1850. Is 'empire' really a useful term? I will confront historical evidence with archaeological data from one area at
the intersection of several polities: the dallols in Niger. This area is rich in remains, said to result from population movements and processes of religious and
political change, but these remains have been only briefly described so far. As this region is a key area of migrations and cross-influences, it is the ideal
'laboratory' for exploring the materialisation of contacts and boundaries, through a mapping of material culture distributions.
My project will approach these sites holistically, carrying out archaeological regional survey and prospection. Excavation will indicate chronology and cultural
affiliation. At lhe same time, I will take an interdisciplinary approach, using anthropological and oral-historical enquiries to obtain background information to
test hypotheses generated by the archaeological data. Enquiries will assess how material culture can show group belonging and population shifts, and
examine the role of individuals called 'technical specialists'. This will help solve the current impasse in our understanding of vast empires which, though they
are historically known, remain poorly understood.
My project will not just improve our knowledge of an almost-unknown part of the world, but thanks to its geographical location, interdisciplinary nature and
strong thematic framework, open up avenues of thinking about the relalion between archaeological and historical data, the mediation of relations through
artefacts, and the archaeology of empires, all widely-relevant research issues
Max ERC Funding
893 161 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym DDRREAM
Project DNA-Damage responses: Regulation and mechanisms
Researcher (PI) Stephen Philip Jackson
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), LS1, ERC-2010-AdG_20100317
Summary The prime objective for every life form is to deliver its genetic material, intact, to the next generation. Each human cell receives tens-of-thousands of DNA lesions per day. These lesions can block genome replication and transcription, and if not repaired or repaired incorrectly, they lead to mutations or wider genome aberrations that threaten cell viability. To counter such threats, life has evolved the DNA-damage response (DDR), to detect DNA damage, signal its presence and mediate its repair. DDR events impact on many cellular processes and, crucially, prevent diverse human diseases that include cancer, neurodegenerative diseases, immune-deficiencies and premature ageing. While much progress has been made in identifying DDR proteins, much remains to be learned about the molecular and cellular functions that they control. Furthermore, the frequent reporting of new DDR proteins in the literature suggests that many others await identification. The main goals for the proposed research are to: identify important new DDR-proteins and DDR-modulators, particularly those responding to DNA double-strand breaks (DSBs); provide mechanistic insights into how these proteins function; and determine how DDR events are affected by chromatin structure, by molecular chaperones and components of the Ubiquitin and Sumo systems. To achieve these ends, we will use molecular biology, biochemical, cell-biology and molecular genetics approaches, including synthetic-lethal and phenotypic-suppression screening methods in human cells and in the nematode worm. This work will not only be of academic importance, but will also indicate how DDR dysfunction can cause human disease and how such diseases might be better diagnosed and treated.
Summary
The prime objective for every life form is to deliver its genetic material, intact, to the next generation. Each human cell receives tens-of-thousands of DNA lesions per day. These lesions can block genome replication and transcription, and if not repaired or repaired incorrectly, they lead to mutations or wider genome aberrations that threaten cell viability. To counter such threats, life has evolved the DNA-damage response (DDR), to detect DNA damage, signal its presence and mediate its repair. DDR events impact on many cellular processes and, crucially, prevent diverse human diseases that include cancer, neurodegenerative diseases, immune-deficiencies and premature ageing. While much progress has been made in identifying DDR proteins, much remains to be learned about the molecular and cellular functions that they control. Furthermore, the frequent reporting of new DDR proteins in the literature suggests that many others await identification. The main goals for the proposed research are to: identify important new DDR-proteins and DDR-modulators, particularly those responding to DNA double-strand breaks (DSBs); provide mechanistic insights into how these proteins function; and determine how DDR events are affected by chromatin structure, by molecular chaperones and components of the Ubiquitin and Sumo systems. To achieve these ends, we will use molecular biology, biochemical, cell-biology and molecular genetics approaches, including synthetic-lethal and phenotypic-suppression screening methods in human cells and in the nematode worm. This work will not only be of academic importance, but will also indicate how DDR dysfunction can cause human disease and how such diseases might be better diagnosed and treated.
Max ERC Funding
2 482 492 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym DIVERSITY
Project Evolution of Pathogen and Host Diversity
Researcher (PI) Sunetra Gupta
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Advanced Grant (AdG), LS8, ERC-2010-AdG_20100317
Summary The study of host-pathogen systems is of central importance to the control of infectious disease, but also provides unique opportunities to observe evolution in action. Many pathogen species have diversified under selection pressures from the host; conversely, genes that are important in host defence also exhibit high degrees of polymorphism. This proposal divides into two parts: (1) the evolution of pathogen diversity under host immune selection, and (2) the evolution of host diversity under pathogen selection. I have developed a body of theoretical work showing that discrete population structures can arise through immune selection rather than limitations on genetic exchange. The predictions of this framework concerning the structure and dynamics of antigenic, metabolic and virulence genes will be empirically tested using three different systems: the bacterial pathogen, Neisseira meningitidis, the influenza virus, and the malaria parasite, Plasmodium falciparum. The current theory will also be expanded and modified to address a number of outstanding questions such whether it can explain the occurrence of influenza pandemics. With regard to host diversity, we will be attempting to validate and extend a novel framework incoporating epistatic interactions between malaria-protective genetic disorders of haemoglobin to understand their intriguing geographical distribution and their mode of action against the malarial disease. We will also be exploring the potential of mechanisms that can organise pathogens into discrete strains to generate patterns among host genes responsible for pathogen recognition, such as the Major Histocompatibility Complex. The co-evolution of hosts and pathogens under immune selection thus forms the ultimate theme of this proposal.
Summary
The study of host-pathogen systems is of central importance to the control of infectious disease, but also provides unique opportunities to observe evolution in action. Many pathogen species have diversified under selection pressures from the host; conversely, genes that are important in host defence also exhibit high degrees of polymorphism. This proposal divides into two parts: (1) the evolution of pathogen diversity under host immune selection, and (2) the evolution of host diversity under pathogen selection. I have developed a body of theoretical work showing that discrete population structures can arise through immune selection rather than limitations on genetic exchange. The predictions of this framework concerning the structure and dynamics of antigenic, metabolic and virulence genes will be empirically tested using three different systems: the bacterial pathogen, Neisseira meningitidis, the influenza virus, and the malaria parasite, Plasmodium falciparum. The current theory will also be expanded and modified to address a number of outstanding questions such whether it can explain the occurrence of influenza pandemics. With regard to host diversity, we will be attempting to validate and extend a novel framework incoporating epistatic interactions between malaria-protective genetic disorders of haemoglobin to understand their intriguing geographical distribution and their mode of action against the malarial disease. We will also be exploring the potential of mechanisms that can organise pathogens into discrete strains to generate patterns among host genes responsible for pathogen recognition, such as the Major Histocompatibility Complex. The co-evolution of hosts and pathogens under immune selection thus forms the ultimate theme of this proposal.
Max ERC Funding
1 670 632 €
Duration
Start date: 2011-06-01, End date: 2017-05-31
Project acronym EARLYPOWERONTOLOGIES
Project Causal Structuralist Ontologies in Antiquity: Powers as the basic building block of the worlds of the ancients
Researcher (PI) Anna Marmodoro
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Starting Grant (StG), SH4, ERC-2010-StG_20091209
Summary The project aims to bring about a paradigm shift in our understanding of how the ancients conceived of the universe and its contents over a period of 9 centuries, 600 BC to 300 AD. The driving research hypothesis is that the sole elementary building blocks of nearly all ancient ontologies are powers, from which all there is in the universe is built. Powers are relational properties which are directed towards an end (e.g. the power to heat); thus a world of powers is structured in a web of causal relations. What is revolutionary about such a world is that there is only structure in it; hence, causal structuralist ontologies underlie object-metaphysics or process-metaphysics, and worlds of being and becoming, supplying structures from which objects and processes are derived. Yet such ontologies have never been investigated about ancient thought.
The project’s topic is new: ancient causal structuralism; the speciality is novel too, requiring targeted training of a team of post-doc researchers which will be provided by the applicant and collaborators. The innovativeness of the methodology consists in training ancient philosophy researchers to discern and identify formal aspects of ontologies at the very roots of human rationality – discerning how the ancients built everything out of power structures.
The paradigm shift will generate new knowledge and understanding about the ancient accounts of the world; provide a heuristic vantage point for redrafting the map of the intellectual influences between ancient thinkers; stimulate fruitful debate; and inspire new insights into ancient thought that are literally unthinkable at present. Cognate disciplines that will be affected by the paradigm shift are such as: history of physics; of mathematics; of theology; ancient anthropology.
Summary
The project aims to bring about a paradigm shift in our understanding of how the ancients conceived of the universe and its contents over a period of 9 centuries, 600 BC to 300 AD. The driving research hypothesis is that the sole elementary building blocks of nearly all ancient ontologies are powers, from which all there is in the universe is built. Powers are relational properties which are directed towards an end (e.g. the power to heat); thus a world of powers is structured in a web of causal relations. What is revolutionary about such a world is that there is only structure in it; hence, causal structuralist ontologies underlie object-metaphysics or process-metaphysics, and worlds of being and becoming, supplying structures from which objects and processes are derived. Yet such ontologies have never been investigated about ancient thought.
The project’s topic is new: ancient causal structuralism; the speciality is novel too, requiring targeted training of a team of post-doc researchers which will be provided by the applicant and collaborators. The innovativeness of the methodology consists in training ancient philosophy researchers to discern and identify formal aspects of ontologies at the very roots of human rationality – discerning how the ancients built everything out of power structures.
The paradigm shift will generate new knowledge and understanding about the ancient accounts of the world; provide a heuristic vantage point for redrafting the map of the intellectual influences between ancient thinkers; stimulate fruitful debate; and inspire new insights into ancient thought that are literally unthinkable at present. Cognate disciplines that will be affected by the paradigm shift are such as: history of physics; of mathematics; of theology; ancient anthropology.
Max ERC Funding
1 228 581 €
Duration
Start date: 2011-04-01, End date: 2016-03-31