Project acronym 1stProposal
Project An alternative development of analytic number theory and applications
Researcher (PI) ANDREW Granville
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Country United Kingdom
Call Details Advanced Grant (AdG), PE1, ERC-2014-ADG
Summary The traditional (Riemann) approach to analytic number theory uses the zeros of zeta functions. This requires the associated multiplicative function, say f(n), to have special enough properties that the associated Dirichlet series may be analytically continued. In this proposal we continue to develop an approach which requires less of the multiplicative function, linking the original question with the mean value of f. Such techniques have been around for a long time but have generally been regarded as “ad hoc”. In this project we aim to show that one can develop a coherent approach to the whole subject, not only reproving all of the old results, but also many new ones that appear inaccessible to traditional methods.
Our first goal is to complete a monograph yielding a reworking of all the classical theory using these new methods and then to push forward in new directions. The most important is to extend these techniques to GL(n) L-functions, which we hope will now be feasible having found the correct framework in which to proceed. Since we rarely know how to analytically continue such L-functions this could be of great benefit to the subject.
We are developing the large sieve so that it can be used for individual moduli, and will determine a strong form of that. Also a new method to give asymptotics for mean values, when they are not too small.
We wish to incorporate techniques of analytic number theory into our theory, for example recent advances on mean values of Dirichlet polynomials. Also the recent breakthroughs on the sieve suggest strong links that need further exploration.
Additive combinatorics yields important results in many areas. There are strong analogies between its results, and those for multiplicative functions, especially in large value spectrum theory, and its applications. We hope to develop these further.
Much of this is joint work with K Soundararajan of Stanford University.
Summary
The traditional (Riemann) approach to analytic number theory uses the zeros of zeta functions. This requires the associated multiplicative function, say f(n), to have special enough properties that the associated Dirichlet series may be analytically continued. In this proposal we continue to develop an approach which requires less of the multiplicative function, linking the original question with the mean value of f. Such techniques have been around for a long time but have generally been regarded as “ad hoc”. In this project we aim to show that one can develop a coherent approach to the whole subject, not only reproving all of the old results, but also many new ones that appear inaccessible to traditional methods.
Our first goal is to complete a monograph yielding a reworking of all the classical theory using these new methods and then to push forward in new directions. The most important is to extend these techniques to GL(n) L-functions, which we hope will now be feasible having found the correct framework in which to proceed. Since we rarely know how to analytically continue such L-functions this could be of great benefit to the subject.
We are developing the large sieve so that it can be used for individual moduli, and will determine a strong form of that. Also a new method to give asymptotics for mean values, when they are not too small.
We wish to incorporate techniques of analytic number theory into our theory, for example recent advances on mean values of Dirichlet polynomials. Also the recent breakthroughs on the sieve suggest strong links that need further exploration.
Additive combinatorics yields important results in many areas. There are strong analogies between its results, and those for multiplicative functions, especially in large value spectrum theory, and its applications. We hope to develop these further.
Much of this is joint work with K Soundararajan of Stanford University.
Max ERC Funding
2 011 742 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym 3SPIN
Project Three Dimensional Spintronics
Researcher (PI) Russell Paul Cowburn
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary Spintronics, in which both the spin and the charge of the electron are used, is one of the most exciting new disciplines to emerge from nanoscience. The 3SPIN project seeks to open a new research front within spintronics: namely 3-dimensional spintronics, in which magnetic nanostructures are formed into a 3-dimensional interacting network of unrivalled density and hence technological benefit. 3SPIN will explore early-stage science that could underpin 3-dimensional metallic spintronics. The thesis of the project is: that by careful control of the constituent nanostructure properties, a 3-dimensional medium can be created in which a large number of topological solitons can exist. Although hardly studied at all to date, these solitons should be stable at room temperature, extremely compact and easy to manipulate and propagate. This makes them potentially ideal candidates to form the basis of a new spintronics in which the soliton is the basic transport vector instead of electrical current. ¬3.5M of funding is requested to form a new team of 5 researchers who, over a period of 60 months, will perform computer simulations and experimental studies of solitons in 3-dimensional networks of magnetic nanostructures and develop a laboratory demonstrator 3-dimensional memory device using solitons to represent and store data. A high performance electron beam lithography system (cost 1M¬) will be purchased to allow state-of-the-art magnetic nanostructures to be fabricated with perfect control over their magnetic properties, thus allowing the ideal conditions for solitons to be created and controllably manipulated. Outputs from the project will be a complete understanding of the properties of these new objects and a road map charting the next steps for research in the field.
Summary
Spintronics, in which both the spin and the charge of the electron are used, is one of the most exciting new disciplines to emerge from nanoscience. The 3SPIN project seeks to open a new research front within spintronics: namely 3-dimensional spintronics, in which magnetic nanostructures are formed into a 3-dimensional interacting network of unrivalled density and hence technological benefit. 3SPIN will explore early-stage science that could underpin 3-dimensional metallic spintronics. The thesis of the project is: that by careful control of the constituent nanostructure properties, a 3-dimensional medium can be created in which a large number of topological solitons can exist. Although hardly studied at all to date, these solitons should be stable at room temperature, extremely compact and easy to manipulate and propagate. This makes them potentially ideal candidates to form the basis of a new spintronics in which the soliton is the basic transport vector instead of electrical current. ¬3.5M of funding is requested to form a new team of 5 researchers who, over a period of 60 months, will perform computer simulations and experimental studies of solitons in 3-dimensional networks of magnetic nanostructures and develop a laboratory demonstrator 3-dimensional memory device using solitons to represent and store data. A high performance electron beam lithography system (cost 1M¬) will be purchased to allow state-of-the-art magnetic nanostructures to be fabricated with perfect control over their magnetic properties, thus allowing the ideal conditions for solitons to be created and controllably manipulated. Outputs from the project will be a complete understanding of the properties of these new objects and a road map charting the next steps for research in the field.
Max ERC Funding
2 799 996 €
Duration
Start date: 2010-03-01, End date: 2016-02-29
Project acronym ACTINONSRF
Project MAL: an actin-regulated SRF transcriptional coactivator
Researcher (PI) Richard Treisman
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Country United Kingdom
Call Details Advanced Grant (AdG), LS1, ERC-2010-AdG_20100317
Summary MAL: an actin-regulated SRF transcriptional coactivator
Recent years have seen a revitalised interest in the role of actin in nuclear processes, but the molecular mechanisms involved remain largely unexplored. We will elucidate the molecular basis for the actin-based control of the SRF transcriptional coactivator, MAL. SRF controls transcription through two families of coactivators, the actin-binding MRTFs (MAL, Mkl2), which couple its activity to cytoskeletal dynamics, and the ERK-regulated TCFs (Elk-1, SAP-1, Net). MAL subcellular localisation and transcriptional activity responds to signal-induced changes in G-actin concentration, which are sensed by its actin-binding N-terminal RPEL domain. Members of a second family of RPEL proteins, the Phactrs, also exhibit actin-regulated nucleocytoplasmic shuttling. The proposal addresses the following novel features of actin biology:
¿ Actin as a transcriptional regulator
¿ Actin as a signalling molecule
¿ Actin-binding proteins as targets for regulation by actin, rather than regulators of actin function
We will analyse the sequences and proteins involved in actin-regulated nucleocytoplasmic shuttling, using structural biology and biochemistry to analyse its control by changes in actin-RPEL domain interactions. We will characterise the dynamics of shuttling, and develop reporters for changes in actin-MAL interaction for analysis of pathway activation in vivo. We will identify genes controlling MAL itself, and the balance between the nuclear and cytoplasmic actin pools. The mechanism by which actin represses transcriptional activation by MAL in the nucleus, and its relation to MAL phosphorylation, will be elucidated. Finally, we will map MRTF and TCF cofactor recruitment to SRF targets on a genome-wide scale, and identify the steps in transcription controlled by actin-MAL interaction.
Summary
MAL: an actin-regulated SRF transcriptional coactivator
Recent years have seen a revitalised interest in the role of actin in nuclear processes, but the molecular mechanisms involved remain largely unexplored. We will elucidate the molecular basis for the actin-based control of the SRF transcriptional coactivator, MAL. SRF controls transcription through two families of coactivators, the actin-binding MRTFs (MAL, Mkl2), which couple its activity to cytoskeletal dynamics, and the ERK-regulated TCFs (Elk-1, SAP-1, Net). MAL subcellular localisation and transcriptional activity responds to signal-induced changes in G-actin concentration, which are sensed by its actin-binding N-terminal RPEL domain. Members of a second family of RPEL proteins, the Phactrs, also exhibit actin-regulated nucleocytoplasmic shuttling. The proposal addresses the following novel features of actin biology:
¿ Actin as a transcriptional regulator
¿ Actin as a signalling molecule
¿ Actin-binding proteins as targets for regulation by actin, rather than regulators of actin function
We will analyse the sequences and proteins involved in actin-regulated nucleocytoplasmic shuttling, using structural biology and biochemistry to analyse its control by changes in actin-RPEL domain interactions. We will characterise the dynamics of shuttling, and develop reporters for changes in actin-MAL interaction for analysis of pathway activation in vivo. We will identify genes controlling MAL itself, and the balance between the nuclear and cytoplasmic actin pools. The mechanism by which actin represses transcriptional activation by MAL in the nucleus, and its relation to MAL phosphorylation, will be elucidated. Finally, we will map MRTF and TCF cofactor recruitment to SRF targets on a genome-wide scale, and identify the steps in transcription controlled by actin-MAL interaction.
Max ERC Funding
1 889 995 €
Duration
Start date: 2011-10-01, End date: 2017-09-30
Project acronym AFRAB
Project African Abolitionism: The Rise and Transformations of Anti-Slavery in Africa
Researcher (PI) Benedetta ROSSI
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Country United Kingdom
Call Details Advanced Grant (AdG), SH6, ERC-2019-ADG
Summary The historiography of Euro-American abolitionism is so vast that it has a history of its own (Brown 2006). By contrast, research on African abolitionism is a narrow field focused primarily on European anti-slavery activities. It presupposes that when Europe abolished slavery in Africa, Africans became abolitionists. This conclusion is unfounded. Many general questions have never been asked: When and where did African abolitionist movements develop? Who are the main ideologues of African abolitionism? How did abolitionism spread, among which groups? What forms of political struggle did African anti-slavery give rise to? While individual African abolitionists and regional movements have attracted limited attention, there is no major review of the phenomenon on a continental scale. AFRAB fills this gap. It contributes to African and global history and slavery studies by analyzing and comparing African abolitionist ideas and anti-slavery movements, the long-term consequences of European abolitionism, and the resilience of pro-slavery discourses.
Summary
The historiography of Euro-American abolitionism is so vast that it has a history of its own (Brown 2006). By contrast, research on African abolitionism is a narrow field focused primarily on European anti-slavery activities. It presupposes that when Europe abolished slavery in Africa, Africans became abolitionists. This conclusion is unfounded. Many general questions have never been asked: When and where did African abolitionist movements develop? Who are the main ideologues of African abolitionism? How did abolitionism spread, among which groups? What forms of political struggle did African anti-slavery give rise to? While individual African abolitionists and regional movements have attracted limited attention, there is no major review of the phenomenon on a continental scale. AFRAB fills this gap. It contributes to African and global history and slavery studies by analyzing and comparing African abolitionist ideas and anti-slavery movements, the long-term consequences of European abolitionism, and the resilience of pro-slavery discourses.
Max ERC Funding
2 499 951 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym AMSTAT
Project Problems at the Applied Mathematics-Statistics Interface
Researcher (PI) Andrew Stuart
Host Institution (HI) THE UNIVERSITY OF WARWICK
Country United Kingdom
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary Applied mathematics is concerned with developing models with predictive capability, and with probing those models to obtain qualitative and quantitative insight into the phenomena being modelled. Statistics is data-driven and is aimed at the development of methodologies to optimize the information derived from data. The increasing complexity of phenomena that scientists and engineers wish to model, together with our increased ability to gather, store and interrogate data, mean that the subjects of applied mathematics and statistics are increasingly required to work in conjunction. This research proposal is concerned with a research program at the interface between these two disciplines, aimed at problems in differential equations where profusion of data and the sophisticated model combine to produce the mathematical problem of obtaining information from a probability measure on function space. Applications are far-reaching and include the atmospheric sciences, geophysics, chemistry, econometrics and signal processing. The objectives of the research are: (i) to create the systematic foundations for a range of problems at the applied mathematics and statistics interface which share the common mathematical structure underpinning the range of applications described above; (ii) to exploit this common mathematical structure to design effecient algorithms to sample probability measures on function space; (iii) to apply these algorithms to attack a range of significant problems arising in molecular dynamics and in the atmospheric sciences.
Summary
Applied mathematics is concerned with developing models with predictive capability, and with probing those models to obtain qualitative and quantitative insight into the phenomena being modelled. Statistics is data-driven and is aimed at the development of methodologies to optimize the information derived from data. The increasing complexity of phenomena that scientists and engineers wish to model, together with our increased ability to gather, store and interrogate data, mean that the subjects of applied mathematics and statistics are increasingly required to work in conjunction. This research proposal is concerned with a research program at the interface between these two disciplines, aimed at problems in differential equations where profusion of data and the sophisticated model combine to produce the mathematical problem of obtaining information from a probability measure on function space. Applications are far-reaching and include the atmospheric sciences, geophysics, chemistry, econometrics and signal processing. The objectives of the research are: (i) to create the systematic foundations for a range of problems at the applied mathematics and statistics interface which share the common mathematical structure underpinning the range of applications described above; (ii) to exploit this common mathematical structure to design effecient algorithms to sample probability measures on function space; (iii) to apply these algorithms to attack a range of significant problems arising in molecular dynamics and in the atmospheric sciences.
Max ERC Funding
1 693 501 €
Duration
Start date: 2008-12-01, End date: 2014-11-30
Project acronym ANCESTORS
Project Making Ancestors: The Politics of Death in Prehistoric Europe
Researcher (PI) John ROBB
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), SH6, ERC-2019-ADG
Summary How did politics and inequality work in prehistoric Europe? Traditionally, politics has been seen in terms of discrete political ranks identified through differential treatment of individual burials. But this results in classifying much of prehistory, where the dead were treated in ways which effaced individual identity, as egalitarian. The result is an artificially dichotomous history: Neolithic people had landscapes, rituals and ancestors, Bronze and Iron Age people had politics and inequality. In the last two decades this approach has been strongly critiqued. Burial treatment rarely relates to status so directly; the dead serve many different political roles. Inequality in pre-state groups rarely consists of clear strata; inequality and equality exist in tension within groups. Inequality may have been present throughout European prehistory, but manifest situationally through differential life chances, kinship, ritual or ancestorhood, rather than overtly through political command, wealth or identity. But this new perspective has never been tested empirically.
This project tests alternative models of prehistoric inequality and deathways. To investigate social relations in life, it uses osteobiography, reconstructing life stories from skeletons through scientific data on identity, health, diet, mobility and kinship. To understand deathways, it employs a second new methodology, funerary taphonomy. Combining osteobiography and taphonomy allows us to connect ancient lives and deaths. Peninsular Italy provides a substantial test sequence typical of much of Europe. For each of three key periods (Neolithic, 6000-4000 BC; Final Neolithic to Early Bronze Age, 4000-1800 BC; Middle Bronze Age to Iron Age, 1800-600 BC), 200+ individuals will be analysed. The results will allow us to evaluate for the first time how inequality affected lives in prehistoric Europe and what role ancestors played in it.
Summary
How did politics and inequality work in prehistoric Europe? Traditionally, politics has been seen in terms of discrete political ranks identified through differential treatment of individual burials. But this results in classifying much of prehistory, where the dead were treated in ways which effaced individual identity, as egalitarian. The result is an artificially dichotomous history: Neolithic people had landscapes, rituals and ancestors, Bronze and Iron Age people had politics and inequality. In the last two decades this approach has been strongly critiqued. Burial treatment rarely relates to status so directly; the dead serve many different political roles. Inequality in pre-state groups rarely consists of clear strata; inequality and equality exist in tension within groups. Inequality may have been present throughout European prehistory, but manifest situationally through differential life chances, kinship, ritual or ancestorhood, rather than overtly through political command, wealth or identity. But this new perspective has never been tested empirically.
This project tests alternative models of prehistoric inequality and deathways. To investigate social relations in life, it uses osteobiography, reconstructing life stories from skeletons through scientific data on identity, health, diet, mobility and kinship. To understand deathways, it employs a second new methodology, funerary taphonomy. Combining osteobiography and taphonomy allows us to connect ancient lives and deaths. Peninsular Italy provides a substantial test sequence typical of much of Europe. For each of three key periods (Neolithic, 6000-4000 BC; Final Neolithic to Early Bronze Age, 4000-1800 BC; Middle Bronze Age to Iron Age, 1800-600 BC), 200+ individuals will be analysed. The results will allow us to evaluate for the first time how inequality affected lives in prehistoric Europe and what role ancestors played in it.
Max ERC Funding
1 943 548 €
Duration
Start date: 2020-10-01, End date: 2024-09-30
Project acronym APRA
Project Active Polymers for Renewable Functional Actuators
Researcher (PI) Eugene TERENTJEV
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary The idea of mechanical actuator based on intrinsic material properties of liquid-crystalline elastomers (rather than complex engineering of interacting components) has been understood for 20+ years. The remarkable characteristics of LCE actuation (fully reversible action; large-amplitude, with a stroke of 5%-300%; stress-strain-speed response almost exactly matching the human muscle) make it highly attractive in biomedical engineering, robotics, smart textiles, and other fields. Yet, there is a profound difficulty (bottleneck), which remains the reason why this concept has not found its way into any practical devices & applications. LCE actuation requires alignment (monodomain structure) of the local anisotropy in the permanently crosslinked polymer network - which has been impossible to achieve in any useful large-scale configuration except the flat film, due to the unavoidable restrictions of two competing processes: orientational alignment and network crosslinking.
Recently, we made a breakthrough, developing LCE vitrimers (polymer networks covalently crosslinked by a bond-exchange reaction). Vitrimers are much more stable than other transient elastomer networks, allow easy thermal re-moulding (making the material fully renewable), and permit molding of complex shapes with intricate local alignment (which are impossible in traditional elastomers). This project will bridge from the concept to technology, tuning the material design for robust nematic LCE vitrimers, imparting photo-actuation capacity with a controlled wavelength, and finally utilising them in practical-engineering actuator applications where the reversible mechanical action is stimulated by light, solvent exposure, or more traditionally - heat. These applications include (but not limited to): continuous spinning light-driven motor, tactile dynamic Braille display, capillary pump and toggle flow switch for microfuidics, active textile fibre, and heliotracking filament that always points at the Sun.
Summary
The idea of mechanical actuator based on intrinsic material properties of liquid-crystalline elastomers (rather than complex engineering of interacting components) has been understood for 20+ years. The remarkable characteristics of LCE actuation (fully reversible action; large-amplitude, with a stroke of 5%-300%; stress-strain-speed response almost exactly matching the human muscle) make it highly attractive in biomedical engineering, robotics, smart textiles, and other fields. Yet, there is a profound difficulty (bottleneck), which remains the reason why this concept has not found its way into any practical devices & applications. LCE actuation requires alignment (monodomain structure) of the local anisotropy in the permanently crosslinked polymer network - which has been impossible to achieve in any useful large-scale configuration except the flat film, due to the unavoidable restrictions of two competing processes: orientational alignment and network crosslinking.
Recently, we made a breakthrough, developing LCE vitrimers (polymer networks covalently crosslinked by a bond-exchange reaction). Vitrimers are much more stable than other transient elastomer networks, allow easy thermal re-moulding (making the material fully renewable), and permit molding of complex shapes with intricate local alignment (which are impossible in traditional elastomers). This project will bridge from the concept to technology, tuning the material design for robust nematic LCE vitrimers, imparting photo-actuation capacity with a controlled wavelength, and finally utilising them in practical-engineering actuator applications where the reversible mechanical action is stimulated by light, solvent exposure, or more traditionally - heat. These applications include (but not limited to): continuous spinning light-driven motor, tactile dynamic Braille display, capillary pump and toggle flow switch for microfuidics, active textile fibre, and heliotracking filament that always points at the Sun.
Max ERC Funding
2 012 136 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym ATG9_SOLVES_IT
Project In vitro high resolution reconstitution of autophagosome nucleation and expansion catalyzed byATG9
Researcher (PI) Sharon TOOZE
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Country United Kingdom
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Autophagy is a conserved, lysosomal-mediated pathway required for cell homeostasis and survival. It is controlled by the master regulators of energy (AMPK) and growth (TORC1) and mediated by the ATG (autophagy) proteins. Deregulation of autophagy is implicated in cancer, immunity, infection, aging and neurodegeneration. Autophagosomes form and expand using membranes from the secretory and endocytic pathways but how this occurs is not understood. ATG9, the only transmembrane ATG protein traffics through the cell in vesicles, and is essential for rapid initiation and expansion of the membranes which form the autophagosome. Crucially, how ATG9 functions is unknown. I will determine how ATG9 initiates the formation and expansion of the autophagosome by amino acid starvation through a molecular dissection of proteins resident in ATG9 vesicles which modulate the composition and property of the initiating membrane. I will employ high resolution light and electron microscopy to characterize the nucleation of the autophagosome, proximity-specific biotinylation and quantitative Mass Spectrometry to uncover the proteome required for the function of the ATG9, and optogenetic tools to acutely regulate signaling lipids. Lastly, with our tools and knowledge I will develop an in vitro reconstitution system to define at a molecular level how ATG9 vesicle proteins, membranes that interact with ATG9 vesicles, and other accessory ATG components nucleate and form an autophagosome. In vitro reconstitution of autophagosomes will be assayed biochemically, and by correlative light and cryo-EM and cryo-EM tomography, while functional reconstitution of autophagy will be tested by selective cargo recruitment. The development of a reconstituted system and identification proteins and lipids which are key components for autophagosome formation will provide a means to identify a new generation of targets for translational work leading to manipulation of autophagy for disease related therapies.
Summary
Autophagy is a conserved, lysosomal-mediated pathway required for cell homeostasis and survival. It is controlled by the master regulators of energy (AMPK) and growth (TORC1) and mediated by the ATG (autophagy) proteins. Deregulation of autophagy is implicated in cancer, immunity, infection, aging and neurodegeneration. Autophagosomes form and expand using membranes from the secretory and endocytic pathways but how this occurs is not understood. ATG9, the only transmembrane ATG protein traffics through the cell in vesicles, and is essential for rapid initiation and expansion of the membranes which form the autophagosome. Crucially, how ATG9 functions is unknown. I will determine how ATG9 initiates the formation and expansion of the autophagosome by amino acid starvation through a molecular dissection of proteins resident in ATG9 vesicles which modulate the composition and property of the initiating membrane. I will employ high resolution light and electron microscopy to characterize the nucleation of the autophagosome, proximity-specific biotinylation and quantitative Mass Spectrometry to uncover the proteome required for the function of the ATG9, and optogenetic tools to acutely regulate signaling lipids. Lastly, with our tools and knowledge I will develop an in vitro reconstitution system to define at a molecular level how ATG9 vesicle proteins, membranes that interact with ATG9 vesicles, and other accessory ATG components nucleate and form an autophagosome. In vitro reconstitution of autophagosomes will be assayed biochemically, and by correlative light and cryo-EM and cryo-EM tomography, while functional reconstitution of autophagy will be tested by selective cargo recruitment. The development of a reconstituted system and identification proteins and lipids which are key components for autophagosome formation will provide a means to identify a new generation of targets for translational work leading to manipulation of autophagy for disease related therapies.
Max ERC Funding
2 121 055 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym BABYRHYTHM
Project Oscillatory Rhythmic Entrainment and the Foundations of Language Acquisition
Researcher (PI) Usha Claire GOSWAMI
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), SH4, ERC-2015-AdG
Summary Half of “late talkers”, infants who are not yet speaking by 2 years of age, will go on to develop language impairments. Currently, we have no reliable means of identifying these infants. Here we combine our developmental approach to phonology (psycholinguistic grain size theory), to the neural mechanisms underlying speech encoding (temporal sampling [TS] theory) and our work on the developmental importance of the speech amplitude envelope (AE) to open a new research front in the foundations of language acquisition. Recent adult research confirms our decade-long focus on the importance of sensitivity to AE ‘rise time’ in children’s language development, showing that rise times (‘auditory edges’) re-set the endogenous cortical oscillations that encode speech. Accordingly, we now apply our in-house state-of-the-art methods for measuring oscillatory rhythmic entrainment in children along with our recent theoretical and behavioural advances concerning AE processing to infant studies. Our core aim is to use the TS theoretical perspective and analysis methods to generate robust early neural and behavioural markers of phonological and morphological development: TS for infants. We have published the first-ever studies of oscillatory entrainment to speech rhythm by children and we have developed methods for technically-challenging EEG speech envelope reconstruction. We now apply these innovative methods to infant language learning and infant-directed speech. Using our cutting-edge EEG methods, we will deliver a novel and innovative road map for charting early language acquisition from a rhythmic entrainment perspective. Our recent 5-year study of rise time sensitivity in infants confirms the feasibility of a TS approach. As our focus is on prosody, syllable stress and syllable processing, our methods will apply across European languages.
Summary
Half of “late talkers”, infants who are not yet speaking by 2 years of age, will go on to develop language impairments. Currently, we have no reliable means of identifying these infants. Here we combine our developmental approach to phonology (psycholinguistic grain size theory), to the neural mechanisms underlying speech encoding (temporal sampling [TS] theory) and our work on the developmental importance of the speech amplitude envelope (AE) to open a new research front in the foundations of language acquisition. Recent adult research confirms our decade-long focus on the importance of sensitivity to AE ‘rise time’ in children’s language development, showing that rise times (‘auditory edges’) re-set the endogenous cortical oscillations that encode speech. Accordingly, we now apply our in-house state-of-the-art methods for measuring oscillatory rhythmic entrainment in children along with our recent theoretical and behavioural advances concerning AE processing to infant studies. Our core aim is to use the TS theoretical perspective and analysis methods to generate robust early neural and behavioural markers of phonological and morphological development: TS for infants. We have published the first-ever studies of oscillatory entrainment to speech rhythm by children and we have developed methods for technically-challenging EEG speech envelope reconstruction. We now apply these innovative methods to infant language learning and infant-directed speech. Using our cutting-edge EEG methods, we will deliver a novel and innovative road map for charting early language acquisition from a rhythmic entrainment perspective. Our recent 5-year study of rise time sensitivity in infants confirms the feasibility of a TS approach. As our focus is on prosody, syllable stress and syllable processing, our methods will apply across European languages.
Max ERC Funding
2 614 275 €
Duration
Start date: 2016-09-01, End date: 2022-08-31
Project acronym BARRIERS
Project The evolution of barriers to gene exchange
Researcher (PI) Roger BUTLIN
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Country United Kingdom
Call Details Advanced Grant (AdG), LS8, ERC-2015-AdG
Summary Speciation is a central process in evolution that involves the origin of barriers to gene flow between populations. Species are typically isolated by several barriers and assembly of multiple barriers separating the same populations seems to be critical to the evolution of strong reproductive isolation. Barriers resulting from direct selection can become coincident through a process of coupling while reinforcement can add barrier traits that are not under direct selection. In the presence of gene flow, these processes are opposed by recombination. While recent research using the latest sequencing technologies has provided much increased knowledge of patterns of differentiation and the genetic basis of local adaptation, it has so far added little to understanding of the coupling and reinforcement processes.
In this project, I will focus on the accumulation of barriers to gene exchange and the processes underlying increasing reproductive isolation. I will use the power of natural contact zones, combined with novel manipulative experiments, to separate the processes that underlie patterns of differentiation and introgression. The Littorina saxatilis model system allows me to do this with both local replication and a contrast between distinct spatial contexts on a larger geographic scale. I will use modelling to determine how processes interact and to investigate the conditions most likely to promote coupling and reinforcement. Overall, the project will provide major new insights into the speciation process, particularly revealing the requirements for progress towards complete reproductive isolation.
Summary
Speciation is a central process in evolution that involves the origin of barriers to gene flow between populations. Species are typically isolated by several barriers and assembly of multiple barriers separating the same populations seems to be critical to the evolution of strong reproductive isolation. Barriers resulting from direct selection can become coincident through a process of coupling while reinforcement can add barrier traits that are not under direct selection. In the presence of gene flow, these processes are opposed by recombination. While recent research using the latest sequencing technologies has provided much increased knowledge of patterns of differentiation and the genetic basis of local adaptation, it has so far added little to understanding of the coupling and reinforcement processes.
In this project, I will focus on the accumulation of barriers to gene exchange and the processes underlying increasing reproductive isolation. I will use the power of natural contact zones, combined with novel manipulative experiments, to separate the processes that underlie patterns of differentiation and introgression. The Littorina saxatilis model system allows me to do this with both local replication and a contrast between distinct spatial contexts on a larger geographic scale. I will use modelling to determine how processes interact and to investigate the conditions most likely to promote coupling and reinforcement. Overall, the project will provide major new insights into the speciation process, particularly revealing the requirements for progress towards complete reproductive isolation.
Max ERC Funding
2 499 927 €
Duration
Start date: 2016-09-01, End date: 2022-02-28