Project acronym 4-TOPS
Project Four experiments in Topological Superconductivity.
Researcher (PI) Laurens Molenkamp
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Country Germany
Call Details Advanced Grant (AdG), PE3, ERC-2016-ADG
Summary Topological materials have developed rapidly in recent years, with my previous ERC-AG project 3-TOP playing a major role in this development. While so far no bulk topological superconductor has been unambiguously demonstrated, their properties can be studied in a very flexible manner by inducing superconductivity through the proximity effect into the surface or edge states of a topological insulator. In 4-TOPS we will explore the possibilities of this approach in full, and conduct a thorough study of induced superconductivity in both two and three dimensional HgTe based topological insulators. The 4 avenues we will follow are:
-SQUID based devices to investigate full phase dependent spectroscopy of the gapless Andreev bound state by studying their Josephson radiation and current-phase relationships.
-Experiments aimed at providing unambiguous proof of localized Majorana states in TI junctions by studying tunnelling transport into such states.
-Attempts to induce superconductivity in Quantum Hall states with the aim of creating a chiral topological superconductor. These chiral superconductors host Majorana fermions at their edges, which, at least in the case of a single QH edge mode, follow non-Abelian statistics and are therefore promising for explorations in topological quantum computing.
-Studies of induced superconductivity in Weyl semimetals, a completely unexplored state of matter.
Taken together, these four sets of experiments will greatly enhance our understanding of topological superconductivity, which is not only a subject of great academic interest as it constitutes the study of new phases of matter, but also has potential application in the field of quantum information processing.
Summary
Topological materials have developed rapidly in recent years, with my previous ERC-AG project 3-TOP playing a major role in this development. While so far no bulk topological superconductor has been unambiguously demonstrated, their properties can be studied in a very flexible manner by inducing superconductivity through the proximity effect into the surface or edge states of a topological insulator. In 4-TOPS we will explore the possibilities of this approach in full, and conduct a thorough study of induced superconductivity in both two and three dimensional HgTe based topological insulators. The 4 avenues we will follow are:
-SQUID based devices to investigate full phase dependent spectroscopy of the gapless Andreev bound state by studying their Josephson radiation and current-phase relationships.
-Experiments aimed at providing unambiguous proof of localized Majorana states in TI junctions by studying tunnelling transport into such states.
-Attempts to induce superconductivity in Quantum Hall states with the aim of creating a chiral topological superconductor. These chiral superconductors host Majorana fermions at their edges, which, at least in the case of a single QH edge mode, follow non-Abelian statistics and are therefore promising for explorations in topological quantum computing.
-Studies of induced superconductivity in Weyl semimetals, a completely unexplored state of matter.
Taken together, these four sets of experiments will greatly enhance our understanding of topological superconductivity, which is not only a subject of great academic interest as it constitutes the study of new phases of matter, but also has potential application in the field of quantum information processing.
Max ERC Funding
2 497 567 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym 4D IMAGING
Project Towards 4D Imaging of Fundamental Processes on the Atomic and Sub-Atomic Scale
Researcher (PI) Ferenc Krausz
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Summary
State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym AccelOnChip
Project Attosecond physics, free electron quantum optics, photon generation and radiation biology with the accelerator on a photonic chip
Researcher (PI) Peter HOMMELHOFF
Host Institution (HI) FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG
Country Germany
Call Details Advanced Grant (AdG), PE2, ERC-2019-ADG
Summary Resting on our demonstration of laser-driven nanophotonics-based particle acceleration, we propose to build a miniature particle accelerator on a photonic chip, comprising high gradient acceleration and fully optical field-based electron control. The resulting electron beam has outstanding space-time properties: It is bunched on sub-femtosecond timescales, is nanometres wide and coherent. We aim at utilizing this new form of all-optical free electron control in a broad research program with five exciting objectives:
(1) Build a 5 MeV accelerator on a photonic chip in a shoebox-sized vessel,
(2) Perform ultrafast diffraction with attosecond and even zeptosecond electron pulses,
(3) Generate photons on chip at various wavelengths (IR to x-ray),
(4) Couple quantum-coherently electron wavepackets and light in multiple interaction zones, and
(5) Conduct radiobiological experiments, akin to the new FLASH radiotherapy and Microbeam cell treat-ment.
AccelOnChip will enable five science objectives potentially shifting the horizons of today’s knowledge and capabilities around ultrafast electron imaging, photon generation, (quantum) electron-light coupling, and radiotherapy dramatically. Moreover, AccelOnChip promises to democratize accelerators: the accelerator on a chip will be based on inexpensive nanofabrication technology. We foresee that every university lab can have access to particle and light sources, today only accessible at large facilities. Last, AccelOnChip will take decisive steps towards an ultracompact electron beam radiation device to be put into the tip of a catheter, a potentially disruptive radiation therapy device facilitating new treatment forms. AccelOnChip is a cross-disciplinary high risk/high return project combining and benefiting nanophotonics, accelerator science, ultra-fast physics, materials science, coherent light-matter coupling, light generation, and radiology - and is based on my group’s unique expertise acquired in recent years.
Summary
Resting on our demonstration of laser-driven nanophotonics-based particle acceleration, we propose to build a miniature particle accelerator on a photonic chip, comprising high gradient acceleration and fully optical field-based electron control. The resulting electron beam has outstanding space-time properties: It is bunched on sub-femtosecond timescales, is nanometres wide and coherent. We aim at utilizing this new form of all-optical free electron control in a broad research program with five exciting objectives:
(1) Build a 5 MeV accelerator on a photonic chip in a shoebox-sized vessel,
(2) Perform ultrafast diffraction with attosecond and even zeptosecond electron pulses,
(3) Generate photons on chip at various wavelengths (IR to x-ray),
(4) Couple quantum-coherently electron wavepackets and light in multiple interaction zones, and
(5) Conduct radiobiological experiments, akin to the new FLASH radiotherapy and Microbeam cell treat-ment.
AccelOnChip will enable five science objectives potentially shifting the horizons of today’s knowledge and capabilities around ultrafast electron imaging, photon generation, (quantum) electron-light coupling, and radiotherapy dramatically. Moreover, AccelOnChip promises to democratize accelerators: the accelerator on a chip will be based on inexpensive nanofabrication technology. We foresee that every university lab can have access to particle and light sources, today only accessible at large facilities. Last, AccelOnChip will take decisive steps towards an ultracompact electron beam radiation device to be put into the tip of a catheter, a potentially disruptive radiation therapy device facilitating new treatment forms. AccelOnChip is a cross-disciplinary high risk/high return project combining and benefiting nanophotonics, accelerator science, ultra-fast physics, materials science, coherent light-matter coupling, light generation, and radiology - and is based on my group’s unique expertise acquired in recent years.
Max ERC Funding
2 498 508 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym ACETOGENS
Project Acetogenic bacteria: from basic physiology via gene regulation to application in industrial biotechnology
Researcher (PI) Volker MueLLER
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Country Germany
Call Details Advanced Grant (AdG), LS9, ERC-2016-ADG
Summary Demand for biofuels and other biologically derived commodities is growing worldwide as efforts increase to reduce reliance on fossil fuels and to limit climate change. Most commercial approaches rely on fermentations of organic matter with its inherent problems in producing CO2 and being in conflict with the food supply of humans. These problems are avoided if CO2 can be used as feedstock. Autotrophic organisms can fix CO2 by producing chemicals that are used as building blocks for the synthesis of cellular components (Biomass). Acetate-forming bacteria (acetogens) do neither require light nor oxygen for this and they can be used in bioreactors to reduce CO2 with hydrogen gas, carbon monoxide or an organic substrate. Gas fermentation using these bacteria has already been realized on an industrial level in two pre-commercial 100,000 gal/yr demonstration facilities to produce fuel ethanol from abundant waste gas resources (by LanzaTech). Acetogens can metabolise a wide variety of substrates that could be used for the production of biocommodities. However, their broad use to produce biofuels and platform chemicals from substrates other than gases or together with gases is hampered by our very limited knowledge about their metabolism and ability to use different substrates simultaneously. Nearly nothing is known about regulatory processes involved in substrate utilization or product formation but this is an absolute requirement for metabolic engineering approaches. The aim of this project is to provide this basic knowledge about metabolic routes in the acetogenic model strain Acetobacterium woodii and their regulation. We will unravel the function of “organelles” found in this bacterium and explore their potential as bio-nanoreactors for the production of biocommodities and pave the road for the industrial use of A. woodii in energy (hydrogen) storage. Thus, this project creates cutting-edge opportunities for the development of biosustainable technologies in Europe.
Summary
Demand for biofuels and other biologically derived commodities is growing worldwide as efforts increase to reduce reliance on fossil fuels and to limit climate change. Most commercial approaches rely on fermentations of organic matter with its inherent problems in producing CO2 and being in conflict with the food supply of humans. These problems are avoided if CO2 can be used as feedstock. Autotrophic organisms can fix CO2 by producing chemicals that are used as building blocks for the synthesis of cellular components (Biomass). Acetate-forming bacteria (acetogens) do neither require light nor oxygen for this and they can be used in bioreactors to reduce CO2 with hydrogen gas, carbon monoxide or an organic substrate. Gas fermentation using these bacteria has already been realized on an industrial level in two pre-commercial 100,000 gal/yr demonstration facilities to produce fuel ethanol from abundant waste gas resources (by LanzaTech). Acetogens can metabolise a wide variety of substrates that could be used for the production of biocommodities. However, their broad use to produce biofuels and platform chemicals from substrates other than gases or together with gases is hampered by our very limited knowledge about their metabolism and ability to use different substrates simultaneously. Nearly nothing is known about regulatory processes involved in substrate utilization or product formation but this is an absolute requirement for metabolic engineering approaches. The aim of this project is to provide this basic knowledge about metabolic routes in the acetogenic model strain Acetobacterium woodii and their regulation. We will unravel the function of “organelles” found in this bacterium and explore their potential as bio-nanoreactors for the production of biocommodities and pave the road for the industrial use of A. woodii in energy (hydrogen) storage. Thus, this project creates cutting-edge opportunities for the development of biosustainable technologies in Europe.
Max ERC Funding
2 497 140 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym ACROSS
Project 3D Reconstruction and Modeling across Different Levels of Abstraction
Researcher (PI) Leif Kobbelt
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Country Germany
Call Details Advanced Grant (AdG), PE6, ERC-2013-ADG
Summary "Digital 3D models are gaining more and more importance in diverse application fields ranging from computer graphics, multimedia and simulation sciences to engineering, architecture, and medicine. Powerful technologies to digitize the 3D shape of real objects and scenes are becoming available even to consumers. However, the raw geometric data emerging from, e.g., 3D scanning or multi-view stereo often lacks a consistent structure and meta-information which are necessary for the effective deployment of such models in sophisticated down-stream applications like animation, simulation, or CAD/CAM that go beyond mere visualization. Our goal is to develop new fundamental algorithms which transform raw geometric input data into augmented 3D models that are equipped with structural meta information such as feature aligned meshes, patch segmentations, local and global geometric constraints, statistical shape variation data, or even procedural descriptions. Our methodological approach is inspired by the human perceptual system that integrates bottom-up (data-driven) and top-down (model-driven) mechanisms in its hierarchical processing. Similarly we combine algorithms operating on different levels of abstraction into reconstruction and modeling networks. Instead of developing an individual solution for each specific application scenario, we create an eco-system of algorithms for automatic processing and interactive design of highly complex 3D models. A key concept is the information flow across all levels of abstraction in a bottom-up as well as top-down fashion. We not only aim at optimizing geometric representations but in fact at bridging the gap between reconstruction and recognition of geometric objects. The results from this project will make it possible to bring 3D models of real world objects into many highly relevant applications in science, industry, and entertainment, greatly reducing the excessive manual effort that is still necessary today."
Summary
"Digital 3D models are gaining more and more importance in diverse application fields ranging from computer graphics, multimedia and simulation sciences to engineering, architecture, and medicine. Powerful technologies to digitize the 3D shape of real objects and scenes are becoming available even to consumers. However, the raw geometric data emerging from, e.g., 3D scanning or multi-view stereo often lacks a consistent structure and meta-information which are necessary for the effective deployment of such models in sophisticated down-stream applications like animation, simulation, or CAD/CAM that go beyond mere visualization. Our goal is to develop new fundamental algorithms which transform raw geometric input data into augmented 3D models that are equipped with structural meta information such as feature aligned meshes, patch segmentations, local and global geometric constraints, statistical shape variation data, or even procedural descriptions. Our methodological approach is inspired by the human perceptual system that integrates bottom-up (data-driven) and top-down (model-driven) mechanisms in its hierarchical processing. Similarly we combine algorithms operating on different levels of abstraction into reconstruction and modeling networks. Instead of developing an individual solution for each specific application scenario, we create an eco-system of algorithms for automatic processing and interactive design of highly complex 3D models. A key concept is the information flow across all levels of abstraction in a bottom-up as well as top-down fashion. We not only aim at optimizing geometric representations but in fact at bridging the gap between reconstruction and recognition of geometric objects. The results from this project will make it possible to bring 3D models of real world objects into many highly relevant applications in science, industry, and entertainment, greatly reducing the excessive manual effort that is still necessary today."
Max ERC Funding
2 482 000 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ActiveCortex
Project Active dendrites and cortical associations
Researcher (PI) Matthew Larkum
Host Institution (HI) HUMBOLDT-UNIVERSITAET ZU BERLIN
Country Germany
Call Details Advanced Grant (AdG), LS5, ERC-2014-ADG
Summary Converging studies from psychophysics in humans to single-cell recordings in monkeys and rodents indicate that most important cognitive processes depend on both feed-forward and feedback information interacting in the brain. Intriguingly, feedback to early cortical processing stages appears to play a causal role in these processes. Despite the central nature of this fact to understanding brain cognition, there is still no mechanistic explanation as to how this information could be so pivotal and what events take place that might be decisive. In this research program, we will test the hypothesis that the extraordinary performance of the cortex derives from an associative mechanism built into the basic neuronal unit: the pyramidal cell. The hypothesis is based on two important facts: (1) feedback information is conveyed predominantly to layer 1 and (2) the apical tuft dendrites that are the major recipient of this feedback information are highly electrogenic.
The research program is divided in to several workpackages to systematically investigate the hypothesis at every level. As a whole, we will investigate the causal link between intrinsic cellular activity and behaviour. To do this we will use eletrophysiological and optical techniques to record and influence cell the intrinsic properties of cells (in particular dendritic activity) in vivo and in vitro in rodents. In vivo experiments will have a specific focus on context driven behaviour and in vitro experiments on the impact of long-range (feedback-carrying) fibers on cell activity. The study will also focus on synaptic plasticity at the interface of feedback information and dendritic electrogenesis, namely synapses on to the tuft dendrite of pyramidal neurons. The proposed program will not only address a long-standing and important hypothesis but also provide a transformational contribution towards understanding the operation of the cerebral cortex.
Summary
Converging studies from psychophysics in humans to single-cell recordings in monkeys and rodents indicate that most important cognitive processes depend on both feed-forward and feedback information interacting in the brain. Intriguingly, feedback to early cortical processing stages appears to play a causal role in these processes. Despite the central nature of this fact to understanding brain cognition, there is still no mechanistic explanation as to how this information could be so pivotal and what events take place that might be decisive. In this research program, we will test the hypothesis that the extraordinary performance of the cortex derives from an associative mechanism built into the basic neuronal unit: the pyramidal cell. The hypothesis is based on two important facts: (1) feedback information is conveyed predominantly to layer 1 and (2) the apical tuft dendrites that are the major recipient of this feedback information are highly electrogenic.
The research program is divided in to several workpackages to systematically investigate the hypothesis at every level. As a whole, we will investigate the causal link between intrinsic cellular activity and behaviour. To do this we will use eletrophysiological and optical techniques to record and influence cell the intrinsic properties of cells (in particular dendritic activity) in vivo and in vitro in rodents. In vivo experiments will have a specific focus on context driven behaviour and in vitro experiments on the impact of long-range (feedback-carrying) fibers on cell activity. The study will also focus on synaptic plasticity at the interface of feedback information and dendritic electrogenesis, namely synapses on to the tuft dendrite of pyramidal neurons. The proposed program will not only address a long-standing and important hypothesis but also provide a transformational contribution towards understanding the operation of the cerebral cortex.
Max ERC Funding
2 386 304 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym AEROCAT
Project Non-ordered nanoparticle superstructures – aerogels as efficient (electro-)catalysts
Researcher (PI) Alexander Eychmueller
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Country Germany
Call Details Advanced Grant (AdG), PE5, ERC-2013-ADG
Summary "AEROCAT aims at the elucidation of the potential of nanoparticle derived aerogels in catalytic applications. The materials will be produced from a variety of nanoparticles available in colloidal solutions, amongst which are metals and metal oxides. The evolving aerogels are extremely light, highly porous solids and have been demonstrated to exhibit in many cases the important properties of the nanosized objects they consist of instead of simply those of the respective bulk solids. The resulting aerogel materials will be characterized with respect to their morphology and composition and their resulting (electro-)catalytic properties examined in the light of the inherent electronic nature of the nanosized constituents. Using the knowledge gained within the project the aerogel materials will be further re-processed in order to exploit their full potential relevant to catalysis and electrocatalysis.
From the vast variety of possible applications of nanoparticle-based hydro- and aerogels like thermoelectrics, LEDs, pollutant clearance, sensorics and others we choose our strictly focused approach
(i) due to the paramount importance of catalysis for the Chemical Industry,
(ii) because we have successfully studied the Ethanol electrooxidation on a Pd-nanoparticle aerogel,
(iii) we have patented on the oxygen reduction reaction in fuel cells with bimetallic aerogels,
(iv) and we gained first and extremely promising results on the semi-hydrogenation of Acetylene on a mixed Pd/ZnO-nanoparticle aerogel.
With this we are on the forefront of a research field which impact might not be overestimated. We should quickly explore its potentials and transfer on a short track the knowledge gained into pre-industrial testing."
Summary
"AEROCAT aims at the elucidation of the potential of nanoparticle derived aerogels in catalytic applications. The materials will be produced from a variety of nanoparticles available in colloidal solutions, amongst which are metals and metal oxides. The evolving aerogels are extremely light, highly porous solids and have been demonstrated to exhibit in many cases the important properties of the nanosized objects they consist of instead of simply those of the respective bulk solids. The resulting aerogel materials will be characterized with respect to their morphology and composition and their resulting (electro-)catalytic properties examined in the light of the inherent electronic nature of the nanosized constituents. Using the knowledge gained within the project the aerogel materials will be further re-processed in order to exploit their full potential relevant to catalysis and electrocatalysis.
From the vast variety of possible applications of nanoparticle-based hydro- and aerogels like thermoelectrics, LEDs, pollutant clearance, sensorics and others we choose our strictly focused approach
(i) due to the paramount importance of catalysis for the Chemical Industry,
(ii) because we have successfully studied the Ethanol electrooxidation on a Pd-nanoparticle aerogel,
(iii) we have patented on the oxygen reduction reaction in fuel cells with bimetallic aerogels,
(iv) and we gained first and extremely promising results on the semi-hydrogenation of Acetylene on a mixed Pd/ZnO-nanoparticle aerogel.
With this we are on the forefront of a research field which impact might not be overestimated. We should quickly explore its potentials and transfer on a short track the knowledge gained into pre-industrial testing."
Max ERC Funding
2 194 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ALEXANDRIA
Project "Foundations for Temporal Retrieval, Exploration and Analytics in Web Archives"
Researcher (PI) Wolfgang Nejdl
Host Institution (HI) GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
Country Germany
Call Details Advanced Grant (AdG), PE6, ERC-2013-ADG
Summary "Significant parts of our cultural heritage are produced on the Web, yet only insufficient opportunities exist for accessing and exploring the past of the Web. The ALEXANDRIA project aims to develop models, tools and techniques necessary to archive and index relevant parts of the Web, and to retrieve and explore this information in a meaningful way. While the easy accessibility to the current Web is a good baseline, optimal access to Web archives requires new models and algorithms for retrieval, exploration, and analytics which go far beyond what is needed to access the current state of the Web. This includes taking into account the unique temporal dimension of Web archives, structured semantic information already available on the Web, as well as social media and network information.
Within ALEXANDRIA, we will significantly advance semantic and time-based indexing for Web archives using human-compiled knowledge available on the Web, to efficiently index, retrieve and explore information about entities and events from the past. In doing so, we will focus on the concurrent evolution of this knowledge and the Web content to be indexed, and take into account diversity and incompleteness of this knowledge. We will further investigate mixed crowd- and machine-based Web analytics to support long- running and collaborative retrieval and analysis processes on Web archives. Usage of implicit human feedback will be essential to provide better indexing through insights during the analysis process and to better focus harvesting of content.
The ALEXANDRIA Testbed will provide an important context for research, exploration and evaluation of the concepts, methods and algorithms developed in this project, and will provide both relevant collections and algorithms that enable further research on and practical application of our research results to existing archives like the Internet Archive, the Internet Memory Foundation and Web archives maintained by European national libraries."
Summary
"Significant parts of our cultural heritage are produced on the Web, yet only insufficient opportunities exist for accessing and exploring the past of the Web. The ALEXANDRIA project aims to develop models, tools and techniques necessary to archive and index relevant parts of the Web, and to retrieve and explore this information in a meaningful way. While the easy accessibility to the current Web is a good baseline, optimal access to Web archives requires new models and algorithms for retrieval, exploration, and analytics which go far beyond what is needed to access the current state of the Web. This includes taking into account the unique temporal dimension of Web archives, structured semantic information already available on the Web, as well as social media and network information.
Within ALEXANDRIA, we will significantly advance semantic and time-based indexing for Web archives using human-compiled knowledge available on the Web, to efficiently index, retrieve and explore information about entities and events from the past. In doing so, we will focus on the concurrent evolution of this knowledge and the Web content to be indexed, and take into account diversity and incompleteness of this knowledge. We will further investigate mixed crowd- and machine-based Web analytics to support long- running and collaborative retrieval and analysis processes on Web archives. Usage of implicit human feedback will be essential to provide better indexing through insights during the analysis process and to better focus harvesting of content.
The ALEXANDRIA Testbed will provide an important context for research, exploration and evaluation of the concepts, methods and algorithms developed in this project, and will provide both relevant collections and algorithms that enable further research on and practical application of our research results to existing archives like the Internet Archive, the Internet Memory Foundation and Web archives maintained by European national libraries."
Max ERC Funding
2 493 600 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym AlmaCrypt
Project Algorithmic and Mathematical Cryptology
Researcher (PI) Antoine Joux
Host Institution (HI) CISPA - HELMHOLTZ-ZENTRUM FUR INFORMATIONSSICHERHEIT GGMBH
Country Germany
Call Details Advanced Grant (AdG), PE6, ERC-2014-ADG
Summary Cryptology is a foundation of information security in the digital world. Today's internet is protected by a form of cryptography based on complexity theoretic hardness assumptions. Ideally, they should be strong to ensure security and versatile to offer a wide range of functionalities and allow efficient implementations. However, these assumptions are largely untested and internet security could be built on sand.
The main ambition of Almacrypt is to remedy this issue by challenging the assumptions through an advanced algorithmic analysis.
In particular, this proposal questions the two pillars of public-key encryption: factoring and discrete logarithms. Recently, the PI contributed to show that in some cases, the discrete logarithm problem is considerably weaker than previously assumed. A main objective is to ponder the security of other cases of the discrete logarithm problem, including elliptic curves, and of factoring. We will study the generalization of the recent techniques and search for new algorithmic options with comparable or better efficiency.
We will also study hardness assumptions based on codes and subset-sum, two candidates for post-quantum cryptography. We will consider the applicability of recent algorithmic and mathematical techniques to the resolution of the corresponding putative hard problems, refine the analysis of the algorithms and design new algorithm tools.
Cryptology is not limited to the above assumptions: other hard problems have been proposed to aim at post-quantum security and/or to offer extra functionalities. Should the security of these other assumptions become critical, they would be added to Almacrypt's scope. They could also serve to demonstrate other applications of our algorithmic progress.
In addition to its scientific goal, Almacrypt also aims at seeding a strengthened research community dedicated to algorithmic and mathematical cryptology.
--
Summary
Cryptology is a foundation of information security in the digital world. Today's internet is protected by a form of cryptography based on complexity theoretic hardness assumptions. Ideally, they should be strong to ensure security and versatile to offer a wide range of functionalities and allow efficient implementations. However, these assumptions are largely untested and internet security could be built on sand.
The main ambition of Almacrypt is to remedy this issue by challenging the assumptions through an advanced algorithmic analysis.
In particular, this proposal questions the two pillars of public-key encryption: factoring and discrete logarithms. Recently, the PI contributed to show that in some cases, the discrete logarithm problem is considerably weaker than previously assumed. A main objective is to ponder the security of other cases of the discrete logarithm problem, including elliptic curves, and of factoring. We will study the generalization of the recent techniques and search for new algorithmic options with comparable or better efficiency.
We will also study hardness assumptions based on codes and subset-sum, two candidates for post-quantum cryptography. We will consider the applicability of recent algorithmic and mathematical techniques to the resolution of the corresponding putative hard problems, refine the analysis of the algorithms and design new algorithm tools.
Cryptology is not limited to the above assumptions: other hard problems have been proposed to aim at post-quantum security and/or to offer extra functionalities. Should the security of these other assumptions become critical, they would be added to Almacrypt's scope. They could also serve to demonstrate other applications of our algorithmic progress.
In addition to its scientific goal, Almacrypt also aims at seeding a strengthened research community dedicated to algorithmic and mathematical cryptology.
--
Max ERC Funding
2 403 125 €
Duration
Start date: 2016-01-01, End date: 2022-06-30
Project acronym AMDROMA
Project Algorithmic and Mechanism Design Research in Online MArkets
Researcher (PI) Stefano LEONARDI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Country Italy
Call Details Advanced Grant (AdG), PE6, ERC-2017-ADG
Summary Online markets currently form an important share of the global economy. The Internet hosts classical markets (real-estate, stocks, e-commerce) as well allowing new markets with previously unknown features (web-based advertisement, viral marketing, digital goods, crowdsourcing, sharing economy). Algorithms play a central role in many decision processes involved in online markets. For example, algorithms run electronic auctions, trade stocks, adjusts prices dynamically, and harvest big data to provide economic information. Thus, it is of paramount importance to understand the algorithmic and mechanism design foundations of online markets.
The algorithmic research issues that we consider involve algorithmic mechanism design, online and approximation algorithms, modelling uncertainty in online market design, and large-scale data analysisonline and approximation algorithms, large-scale optimization and data mining. The aim of this research project is to combine these fields to consider research questions that are central for today's Internet economy. We plan to apply these techniques so as to solve fundamental algorithmic problems motivated by web-basedInternet advertisement, Internet market designsharing economy, and crowdsourcingonline labour marketplaces. While my planned research is focussedcentered on foundational work with rigorous design and analysis of in algorithms and mechanismsic design and analysis, it will also include as an important component empirical validation on large-scale real-life datasets.
Summary
Online markets currently form an important share of the global economy. The Internet hosts classical markets (real-estate, stocks, e-commerce) as well allowing new markets with previously unknown features (web-based advertisement, viral marketing, digital goods, crowdsourcing, sharing economy). Algorithms play a central role in many decision processes involved in online markets. For example, algorithms run electronic auctions, trade stocks, adjusts prices dynamically, and harvest big data to provide economic information. Thus, it is of paramount importance to understand the algorithmic and mechanism design foundations of online markets.
The algorithmic research issues that we consider involve algorithmic mechanism design, online and approximation algorithms, modelling uncertainty in online market design, and large-scale data analysisonline and approximation algorithms, large-scale optimization and data mining. The aim of this research project is to combine these fields to consider research questions that are central for today's Internet economy. We plan to apply these techniques so as to solve fundamental algorithmic problems motivated by web-basedInternet advertisement, Internet market designsharing economy, and crowdsourcingonline labour marketplaces. While my planned research is focussedcentered on foundational work with rigorous design and analysis of in algorithms and mechanismsic design and analysis, it will also include as an important component empirical validation on large-scale real-life datasets.
Max ERC Funding
1 780 150 €
Duration
Start date: 2018-07-01, End date: 2023-06-30