Project acronym 0MSPIN
Project Spintronics based on relativistic phenomena in systems with zero magnetic moment
Researcher (PI) Tomas Jungwirth
Host Institution (HI) FYZIKALNI USTAV AV CR V.V.I
Country Czechia
Call Details Advanced Grant (AdG), PE3, ERC-2010-AdG_20100224
Summary The 0MSPIN project consists of an extensive integrated theoretical, experimental and device development programme of research opening a radical new approach to spintronics. Spintronics has the potential to supersede existing storage and memory applications, and to provide alternatives to current CMOS technology. Ferromagnetic matels used in all current spintronics applications may make it impractical to realise the full potential of spintronics. Metals are unsuitable for transistor and information processing applications, for opto-electronics, or for high-density integration. The 0MSPIN project aims to remove the major road-block holding back the development of spintronics in a radical way: removing the ferromagnetic component from key active parts or from the whole of the spintronic devices. This approach is based on exploiting the combination of exchange and spin-orbit coupling phenomena and material systems with zero macroscopic moment. The goal of the 0MSPIN is to provide a new paradigm by which spintronics can enter the realms of conventional semiconductors in both fundamental condensed matter research and in information technologies. In the central part of the proposal, the research towards this goal is embedded within a materials science project whose aim is to introduce into physics and microelectronics an entirely new class of semiconductors. 0MSPIN seeks to exploit three classes of material systems: (1) Antiferromagnetic bi-metallic 3d-5d alloys (e.g. Mn2Au). (2) Antiferromagnetic I-II-V semiconductors (e.g. LiMnAs). (3) Non-magnetic spin-orbit coupled semiconductors with injected spin-polarized currents (e.g. 2D III-V structures). Proof of concept devices operating at high temperatures will be fabricated to show-case new functionalities offered by zero-moment systems for sensing and memory applications, information processing, and opto-electronics technologies.
Summary
The 0MSPIN project consists of an extensive integrated theoretical, experimental and device development programme of research opening a radical new approach to spintronics. Spintronics has the potential to supersede existing storage and memory applications, and to provide alternatives to current CMOS technology. Ferromagnetic matels used in all current spintronics applications may make it impractical to realise the full potential of spintronics. Metals are unsuitable for transistor and information processing applications, for opto-electronics, or for high-density integration. The 0MSPIN project aims to remove the major road-block holding back the development of spintronics in a radical way: removing the ferromagnetic component from key active parts or from the whole of the spintronic devices. This approach is based on exploiting the combination of exchange and spin-orbit coupling phenomena and material systems with zero macroscopic moment. The goal of the 0MSPIN is to provide a new paradigm by which spintronics can enter the realms of conventional semiconductors in both fundamental condensed matter research and in information technologies. In the central part of the proposal, the research towards this goal is embedded within a materials science project whose aim is to introduce into physics and microelectronics an entirely new class of semiconductors. 0MSPIN seeks to exploit three classes of material systems: (1) Antiferromagnetic bi-metallic 3d-5d alloys (e.g. Mn2Au). (2) Antiferromagnetic I-II-V semiconductors (e.g. LiMnAs). (3) Non-magnetic spin-orbit coupled semiconductors with injected spin-polarized currents (e.g. 2D III-V structures). Proof of concept devices operating at high temperatures will be fabricated to show-case new functionalities offered by zero-moment systems for sensing and memory applications, information processing, and opto-electronics technologies.
Max ERC Funding
1 938 000 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym 15CBOOKTRADE
Project The 15th-century Book Trade: An Evidence-based Assessment and Visualization of the Distribution, Sale, and Reception of Books in the Renaissance
Researcher (PI) Cristina Dondi
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Summary
The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Max ERC Funding
1 999 172 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym 1D-Engine
Project 1D-electrons coupled to dissipation: a novel approach for understanding and engineering superconducting materials and devices
Researcher (PI) Adrian KANTIAN
Host Institution (HI) HERIOT-WATT UNIVERSITY
Country United Kingdom
Call Details Starting Grant (StG), PE3, ERC-2017-STG
Summary Correlated electrons are at the forefront of condensed matter theory. Interacting quasi-1D electrons have seen vast progress in analytical and numerical theory, and thus in fundamental understanding and quantitative prediction. Yet, in the 1D limit fluctuations preclude important technological use, particularly of superconductors. In contrast, high-Tc superconductors in 2D/3D are not precluded by fluctuations, but lack a fundamental theory, making prediction and engineering of their properties, a major goal in physics, very difficult. This project aims to combine the advantages of both areas by making major progress in the theory of quasi-1D electrons coupled to an electron bath, in part building on recent breakthroughs (with the PIs extensive involvement) in simulating 1D and 2D electrons with parallelized density matrix renormalization group (pDMRG) numerics. Such theory will fundamentally advance the study of open electron systems, and show how to use 1D materials as elements of new superconducting (SC) devices and materials: 1) It will enable a new state of matter, 1D electrons with true SC order. Fluctuations from the electronic liquid, such as graphene, could also enable nanoscale wires to appear SC at high temperatures. 2) A new approach for the deliberate engineering of a high-Tc superconductor. In 1D, how electrons pair by repulsive interactions is understood and can be predicted. Stabilization by reservoir - formed by a parallel array of many such 1D systems - offers a superconductor for which all factors setting Tc are known and can be optimized. 3) Many existing superconductors with repulsive electron pairing, all presently not understood, can be cast as 1D electrons coupled to a bath. Developing chain-DMFT theory based on pDMRG will allow these materials SC properties to be simulated and understood for the first time. 4) The insights gained will be translated to 2D superconductors to study how they could be enhanced by contact with electronic liquids.
Summary
Correlated electrons are at the forefront of condensed matter theory. Interacting quasi-1D electrons have seen vast progress in analytical and numerical theory, and thus in fundamental understanding and quantitative prediction. Yet, in the 1D limit fluctuations preclude important technological use, particularly of superconductors. In contrast, high-Tc superconductors in 2D/3D are not precluded by fluctuations, but lack a fundamental theory, making prediction and engineering of their properties, a major goal in physics, very difficult. This project aims to combine the advantages of both areas by making major progress in the theory of quasi-1D electrons coupled to an electron bath, in part building on recent breakthroughs (with the PIs extensive involvement) in simulating 1D and 2D electrons with parallelized density matrix renormalization group (pDMRG) numerics. Such theory will fundamentally advance the study of open electron systems, and show how to use 1D materials as elements of new superconducting (SC) devices and materials: 1) It will enable a new state of matter, 1D electrons with true SC order. Fluctuations from the electronic liquid, such as graphene, could also enable nanoscale wires to appear SC at high temperatures. 2) A new approach for the deliberate engineering of a high-Tc superconductor. In 1D, how electrons pair by repulsive interactions is understood and can be predicted. Stabilization by reservoir - formed by a parallel array of many such 1D systems - offers a superconductor for which all factors setting Tc are known and can be optimized. 3) Many existing superconductors with repulsive electron pairing, all presently not understood, can be cast as 1D electrons coupled to a bath. Developing chain-DMFT theory based on pDMRG will allow these materials SC properties to be simulated and understood for the first time. 4) The insights gained will be translated to 2D superconductors to study how they could be enhanced by contact with electronic liquids.
Max ERC Funding
1 491 013 €
Duration
Start date: 2018-10-01, End date: 2024-03-31
Project acronym 20SComplexity
Project An integrative approach to uncover the multilevel regulation of 20S proteasome degradation
Researcher (PI) Michal Sharon
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Summary
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym 2D-4-CO2
Project DESIGNING 2D NANOSHEETS FOR CO2 REDUCTION AND INTEGRATION INTO vdW HETEROSTRUCTURES FOR ARTIFICIAL PHOTOSYNTHESIS
Researcher (PI) Damien VOIRY
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary CO2 reduction reaction (CO2RR) holds great promise for conversion of the green-house gas carbon dioxide into chemical fuels. The absence of catalytic materials demonstrating high performance and high selectivity currently hampers practical demonstration. CO2RR is also limited by the low solubility of CO2 in the electrolyte solution and therefore electrocatalytic reactions in gas phase using gas diffusion electrodes would be preferred. 2D materials have recently emerged as a novel class of electrocatalytic materials thanks to their rich structures and electronic properties. The synthesis of novel 2D catalysts and their implementation into photocatalytic systems would be a major step towards the development of devices for storing solar energy in the form of chemical fuels. With 2D-4-CO2, I propose to: 1) develop novel class of CO2RR catalysts based on conducting 2D nanosheets and 2) demonstrate photocatalytic conversion of CO2 into chemical fuels using structure engineered gas diffusion electrodes made of 2D conducting catalysts. To reach this goal, the first objective of 2D-4-CO2 is to provide guidelines for the development of novel cutting-edge 2D catalysts towards CO2 conversion into chemical fuel. This will be possible by using a multidisciplinary approach based on 2D materials engineering, advanced methods of characterization and novel designs of gas diffusion electrodes for the reduction of CO2 in gas phase. The second objective is to develop practical photocatalytic systems using van der Waals (vdW) heterostructures for the efficient conversion of CO2 into chemical fuels. vdW heterostructures will consist in rational designs of 2D materials and 2D-like materials deposited by atomic layer deposition in order to achieve highly efficient light conversion and prolonged stability. This project will not only enable a deeper understanding of the CO2RR but it will also provide practical strategies for large-scale application of CO2RR for solar fuel production.
Summary
CO2 reduction reaction (CO2RR) holds great promise for conversion of the green-house gas carbon dioxide into chemical fuels. The absence of catalytic materials demonstrating high performance and high selectivity currently hampers practical demonstration. CO2RR is also limited by the low solubility of CO2 in the electrolyte solution and therefore electrocatalytic reactions in gas phase using gas diffusion electrodes would be preferred. 2D materials have recently emerged as a novel class of electrocatalytic materials thanks to their rich structures and electronic properties. The synthesis of novel 2D catalysts and their implementation into photocatalytic systems would be a major step towards the development of devices for storing solar energy in the form of chemical fuels. With 2D-4-CO2, I propose to: 1) develop novel class of CO2RR catalysts based on conducting 2D nanosheets and 2) demonstrate photocatalytic conversion of CO2 into chemical fuels using structure engineered gas diffusion electrodes made of 2D conducting catalysts. To reach this goal, the first objective of 2D-4-CO2 is to provide guidelines for the development of novel cutting-edge 2D catalysts towards CO2 conversion into chemical fuel. This will be possible by using a multidisciplinary approach based on 2D materials engineering, advanced methods of characterization and novel designs of gas diffusion electrodes for the reduction of CO2 in gas phase. The second objective is to develop practical photocatalytic systems using van der Waals (vdW) heterostructures for the efficient conversion of CO2 into chemical fuels. vdW heterostructures will consist in rational designs of 2D materials and 2D-like materials deposited by atomic layer deposition in order to achieve highly efficient light conversion and prolonged stability. This project will not only enable a deeper understanding of the CO2RR but it will also provide practical strategies for large-scale application of CO2RR for solar fuel production.
Max ERC Funding
1 499 931 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym 2D-CHEM
Project Two-Dimensional Chemistry towards New Graphene Derivatives
Researcher (PI) Michal Otyepka
Host Institution (HI) UNIVERZITA PALACKEHO V OLOMOUCI
Country Czechia
Call Details Consolidator Grant (CoG), PE5, ERC-2015-CoG
Summary The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Summary
The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Max ERC Funding
1 831 103 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym 2D4QT
Project 2D Materials for Quantum Technology
Researcher (PI) Christoph STAMPFER
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Country Germany
Call Details Consolidator Grant (CoG), PE3, ERC-2018-COG
Summary Since its discovery, graphene has been indicated as a promising platform for quantum technologies (QT). The number of theoretical proposal dedicated to this vision has grown steadily, exploring a wide range of directions, ranging from spin and valley qubits, to topologically-protected states. The experimental confirmation of these ideas lagged so far significantly behind, mostly because of material quality problems. The quality of graphene-based devices has however improved dramatically in the past five years, thanks to the advent of the so-called van der Waals (vdW) heteostructures - artificial solids formed by mechanically stacking layers of different two dimensional (2D) materials, such as graphene, hexagonal boron nitride and transition metal dichalcogenides. These new advances open now finally the door to put several of those theoretical proposals to test.
The goal of this project is to assess experimentally the potential of graphene-based heterostructures for QT applications. Specifically, I will push the development of an advanced technological platform for vdW heterostructures, which will allow to give quantitative answers to the following open questions: i) what are the relaxation and coherence times of spin and valley qubits in isotopically purified bilayer graphene (BLG); ii) what is the efficiency of a Cooper-pair splitter based on BLG; and iii) what are the characteristic energy scales of topologically protected quantum states engineered in graphene-based heterostructures.
At the end of this project, I aim at being in the position of saying whether graphene is the horse-worth-betting-on predicted by theory, or whether it still hides surprises in terms of fundamental physics. The technological advancements developed in this project for integrating nanostructured layers into vdW heterostructures will reach even beyond this goal, opening the door to new research directions and possible applications.
Summary
Since its discovery, graphene has been indicated as a promising platform for quantum technologies (QT). The number of theoretical proposal dedicated to this vision has grown steadily, exploring a wide range of directions, ranging from spin and valley qubits, to topologically-protected states. The experimental confirmation of these ideas lagged so far significantly behind, mostly because of material quality problems. The quality of graphene-based devices has however improved dramatically in the past five years, thanks to the advent of the so-called van der Waals (vdW) heteostructures - artificial solids formed by mechanically stacking layers of different two dimensional (2D) materials, such as graphene, hexagonal boron nitride and transition metal dichalcogenides. These new advances open now finally the door to put several of those theoretical proposals to test.
The goal of this project is to assess experimentally the potential of graphene-based heterostructures for QT applications. Specifically, I will push the development of an advanced technological platform for vdW heterostructures, which will allow to give quantitative answers to the following open questions: i) what are the relaxation and coherence times of spin and valley qubits in isotopically purified bilayer graphene (BLG); ii) what is the efficiency of a Cooper-pair splitter based on BLG; and iii) what are the characteristic energy scales of topologically protected quantum states engineered in graphene-based heterostructures.
At the end of this project, I aim at being in the position of saying whether graphene is the horse-worth-betting-on predicted by theory, or whether it still hides surprises in terms of fundamental physics. The technological advancements developed in this project for integrating nanostructured layers into vdW heterostructures will reach even beyond this goal, opening the door to new research directions and possible applications.
Max ERC Funding
1 806 250 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym 2DHIBSA
Project Nanoscopic and Hierachical Materials via Living Crystallization-Driven Self-Assembly
Researcher (PI) Ian MANNERS
Host Institution (HI) UNIVERSITY OF BRISTOL
Country United Kingdom
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Summary
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Max ERC Funding
2 499 597 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym 2DMATER
Project Controlled Synthesis of Two-Dimensional Nanomaterials for Energy Storage and Conversion
Researcher (PI) Xinliang Feng
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Country Germany
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary "Two-dimensional (2D) nanosheets, which possess a high degree of anisotropy with nanoscale thickness and infinite length in other dimensions, hold enormous promise as a novel class of ultrathin 2D nanomaterials with various unique functionalities and properties, and exhibit great potential in energy storage and conversion systems that are substantially different from their respective 3D bulk forms. Here I propose a strategy for the synthesis and processing of various 2D nanosheets across a broad range of inorganic, organic and polymeric materials with molecular-level or thin thickness through both the top-down exfoliation of layered materials and the bottom-up assembly of available molecular building blocks. Further, I aim to develop the synthesis of various 2D-nanosheet based composite materials with thickness of less than 100 nm and the assembly of 2D nanosheets into novel hierarchal superstrucutures (like aerogels, spheres, porous particles, nanotubes, multi-layer films). The structural features of these 2D nanomaterials will be controllably tailored by both the used layered precursors and processing methodologies. The consequence is that I will apply and combine defined functional components as well as assembly protocols to create novel 2D nanomaterials for specific purposes in energy storage and conversion systems. Their unique characters will include the good electrical conductivity, excellent mechanical flexibility, high surface area, high chemical stability, fast electron transport and ion diffusion etc. Applications will be mainly demonstrated for the construction of lithium ion batteries (anode and cathode), supercapacitors (symmetric and asymmetric) and fuel cells. As the key achievements, I expect to establish the delineation of reliable structure-property relationships and improved device performance of 2D nanomaterials."
Summary
"Two-dimensional (2D) nanosheets, which possess a high degree of anisotropy with nanoscale thickness and infinite length in other dimensions, hold enormous promise as a novel class of ultrathin 2D nanomaterials with various unique functionalities and properties, and exhibit great potential in energy storage and conversion systems that are substantially different from their respective 3D bulk forms. Here I propose a strategy for the synthesis and processing of various 2D nanosheets across a broad range of inorganic, organic and polymeric materials with molecular-level or thin thickness through both the top-down exfoliation of layered materials and the bottom-up assembly of available molecular building blocks. Further, I aim to develop the synthesis of various 2D-nanosheet based composite materials with thickness of less than 100 nm and the assembly of 2D nanosheets into novel hierarchal superstrucutures (like aerogels, spheres, porous particles, nanotubes, multi-layer films). The structural features of these 2D nanomaterials will be controllably tailored by both the used layered precursors and processing methodologies. The consequence is that I will apply and combine defined functional components as well as assembly protocols to create novel 2D nanomaterials for specific purposes in energy storage and conversion systems. Their unique characters will include the good electrical conductivity, excellent mechanical flexibility, high surface area, high chemical stability, fast electron transport and ion diffusion etc. Applications will be mainly demonstrated for the construction of lithium ion batteries (anode and cathode), supercapacitors (symmetric and asymmetric) and fuel cells. As the key achievements, I expect to establish the delineation of reliable structure-property relationships and improved device performance of 2D nanomaterials."
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym 2DNANOCAPS
Project Next Generation of 2D-Nanomaterials: Enabling Supercapacitor Development
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Country Ireland
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary Climate change and the decreasing availability of fossil fuels require society to move towards sustainable and renewable resources. 2DNanoCaps will focus on electrochemical energy storage, specifically supercapacitors. In terms of performance supercapacitors fill up the gap between batteries and the classical capacitors. Whereas batteries possess a high energy density but low power density, supercapacitors possess high power density but low energy density. Efforts are currently dedicated to move supercapacitors towards high energy density and high power density performance. Improvements have been achieved in the last few years due to the use of new electrode nanomaterials and the design of new hybrid faradic/capacitive systems. We recognize, however, that we are reaching a newer limit beyond which we will only see small incremental improvements. The main reason for this being the intrinsic difficulty in handling and processing materials at the nano-scale and the lack of communication across different scientific disciplines. I plan to use a multidisciplinary approach, where novel nanomaterials, existing knowledge on nano-scale processing and established expertise in device fabrication and testing will be brought together to focus on creating more efficient supercapacitor technologies. 2DNanoCaps will exploit liquid phase exfoliated two-dimensional nanomaterials such as transition metal oxides, layered metal chalcogenides and graphene as electrode materials. Electrodes will be ultra-thin (capacitance and thickness of the electrodes are inversely proportional), conductive, with high dielectric constants. Intercalation of ions between the assembled 2D flakes will be also achievable, providing pseudo-capacitance. The research here proposed will be initially based on fundamental laboratory studies, recognising that this holds the key to achieving step-change in supercapacitors, but also includes scaling-up and hybridisation as final objectives.
Summary
Climate change and the decreasing availability of fossil fuels require society to move towards sustainable and renewable resources. 2DNanoCaps will focus on electrochemical energy storage, specifically supercapacitors. In terms of performance supercapacitors fill up the gap between batteries and the classical capacitors. Whereas batteries possess a high energy density but low power density, supercapacitors possess high power density but low energy density. Efforts are currently dedicated to move supercapacitors towards high energy density and high power density performance. Improvements have been achieved in the last few years due to the use of new electrode nanomaterials and the design of new hybrid faradic/capacitive systems. We recognize, however, that we are reaching a newer limit beyond which we will only see small incremental improvements. The main reason for this being the intrinsic difficulty in handling and processing materials at the nano-scale and the lack of communication across different scientific disciplines. I plan to use a multidisciplinary approach, where novel nanomaterials, existing knowledge on nano-scale processing and established expertise in device fabrication and testing will be brought together to focus on creating more efficient supercapacitor technologies. 2DNanoCaps will exploit liquid phase exfoliated two-dimensional nanomaterials such as transition metal oxides, layered metal chalcogenides and graphene as electrode materials. Electrodes will be ultra-thin (capacitance and thickness of the electrodes are inversely proportional), conductive, with high dielectric constants. Intercalation of ions between the assembled 2D flakes will be also achievable, providing pseudo-capacitance. The research here proposed will be initially based on fundamental laboratory studies, recognising that this holds the key to achieving step-change in supercapacitors, but also includes scaling-up and hybridisation as final objectives.
Max ERC Funding
1 501 296 €
Duration
Start date: 2011-10-01, End date: 2016-09-30