Project acronym ABEP
Project Asset Bubbles and Economic Policy
Researcher (PI) Jaume Ventura Fontanet
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Country Spain
Call Details Advanced Grant (AdG), SH1, ERC-2009-AdG
Summary Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Summary
Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Max ERC Funding
1 000 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym BRAINPOWER
Project Brain energy supply and the consequences of its failure
Researcher (PI) David Ian Attwell
Host Institution (HI) University College London
Country United Kingdom
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary Energy, supplied in the form of oxygen and glucose in the blood, is essential for the brain s cognitive power. Failure of the energy supply to the nervous system underlies the mental and physical disability occurring in a wide range of economically important neurological disorders, such as stroke, spinal cord injury and cerebral palsy. Using a combination of two-photon imaging, electrophysiological, molecular and transgenic approaches, I will investigate the control of brain energy supply at the vascular level, and at the level of individual neurons and glial cells, and study the deleterious consequences for the neurons, glia and vasculature of a failure of brain energy supply. The work will focus on the following fundamental issues: A. Vascular control of the brain energy supply (1) How important is control of energy supply at the capillary level, by pericytes? (2) Which synapses control blood flow (and thus generate functional imaging signals) in the cortex? B. Neuronal and glial control of brain energy supply (3) How is grey matter neuronal activity powered? (4) How is the white matter supplied with energy? C. The pathological consequences of a loss of brain energy supply (5) How does a fall of energy supply cause neurotoxic glutamate release? (6) How similar are events in the grey and white matter in energy deprivation conditions? (7) How does a transient loss of energy supply affect blood flow regulation? (8) How does brain energy use change after a period without energy supply? Together this work will significantly advance our understanding of how the energy supply to neurons and glia is regulated in normal conditions, and how the loss of the energy supply causes disorders which consume more than 5% of the costs of European health services (5% of ~1000 billion euro/year).
Summary
Energy, supplied in the form of oxygen and glucose in the blood, is essential for the brain s cognitive power. Failure of the energy supply to the nervous system underlies the mental and physical disability occurring in a wide range of economically important neurological disorders, such as stroke, spinal cord injury and cerebral palsy. Using a combination of two-photon imaging, electrophysiological, molecular and transgenic approaches, I will investigate the control of brain energy supply at the vascular level, and at the level of individual neurons and glial cells, and study the deleterious consequences for the neurons, glia and vasculature of a failure of brain energy supply. The work will focus on the following fundamental issues: A. Vascular control of the brain energy supply (1) How important is control of energy supply at the capillary level, by pericytes? (2) Which synapses control blood flow (and thus generate functional imaging signals) in the cortex? B. Neuronal and glial control of brain energy supply (3) How is grey matter neuronal activity powered? (4) How is the white matter supplied with energy? C. The pathological consequences of a loss of brain energy supply (5) How does a fall of energy supply cause neurotoxic glutamate release? (6) How similar are events in the grey and white matter in energy deprivation conditions? (7) How does a transient loss of energy supply affect blood flow regulation? (8) How does brain energy use change after a period without energy supply? Together this work will significantly advance our understanding of how the energy supply to neurons and glia is regulated in normal conditions, and how the loss of the energy supply causes disorders which consume more than 5% of the costs of European health services (5% of ~1000 billion euro/year).
Max ERC Funding
2 499 947 €
Duration
Start date: 2010-04-01, End date: 2016-03-31
Project acronym CHROMOCOND
Project A molecular view of chromosome condensation
Researcher (PI) Frank Uhlmann
Host Institution (HI) CANCER RESEARCH UK LBG
Country United Kingdom
Call Details Advanced Grant (AdG), LS3, ERC-2009-AdG
Summary Eukaryotic cells inherit much of their genomic information in the form of chromosomes during cell division. Centimetre-long DNA molecules are packed into micrometer-sized chromosomes to enable this process. How DNA is organised within mitotic chromosomes is still largely unknown. A key structural protein component of mitotic chromosomes, implicated in their compaction, is the condensin complex. In this proposal, we aim to elucidate the molecular architecture of mitotic chromosomes, taking advantage of new genomic techniques and the relatively simple genome organisation of yeast model systems. We will place particular emphasis on elucidating the contribution of the condensin complex, and the cell cycle regulation of its activities, in promoting chromosome condensation. Our previous work has provided genome-wide maps of condensin binding to budding and fission yeast chromosomes. We will continue to decipher the molecular determinants for condensin binding. To investigate how condensin mediates DNA compaction, we propose to generate chromosome-wide DNA/DNA proximity maps. Our approach will be an extension of the chromosome conformation capture (3C) technique. High throughput sequencing of interaction points has provided a first glimpse of the interactions that govern chromosome condensation. The role that condensin plays in promoting these interactions will be investigated. The contribution of condensin s ATP-dependent activities, and cell cycle-dependent post-translational modifications, will be studied. This will be complemented by mathematical modelling of the condensation process. In addition to chromosome condensation, condensin is required for resolution of sister chromatids in anaphase. We will develop an assay to study the catenation status of sister chromatids and how condensin may contribute to their topological resolution.
Summary
Eukaryotic cells inherit much of their genomic information in the form of chromosomes during cell division. Centimetre-long DNA molecules are packed into micrometer-sized chromosomes to enable this process. How DNA is organised within mitotic chromosomes is still largely unknown. A key structural protein component of mitotic chromosomes, implicated in their compaction, is the condensin complex. In this proposal, we aim to elucidate the molecular architecture of mitotic chromosomes, taking advantage of new genomic techniques and the relatively simple genome organisation of yeast model systems. We will place particular emphasis on elucidating the contribution of the condensin complex, and the cell cycle regulation of its activities, in promoting chromosome condensation. Our previous work has provided genome-wide maps of condensin binding to budding and fission yeast chromosomes. We will continue to decipher the molecular determinants for condensin binding. To investigate how condensin mediates DNA compaction, we propose to generate chromosome-wide DNA/DNA proximity maps. Our approach will be an extension of the chromosome conformation capture (3C) technique. High throughput sequencing of interaction points has provided a first glimpse of the interactions that govern chromosome condensation. The role that condensin plays in promoting these interactions will be investigated. The contribution of condensin s ATP-dependent activities, and cell cycle-dependent post-translational modifications, will be studied. This will be complemented by mathematical modelling of the condensation process. In addition to chromosome condensation, condensin is required for resolution of sister chromatids in anaphase. We will develop an assay to study the catenation status of sister chromatids and how condensin may contribute to their topological resolution.
Max ERC Funding
2 076 126 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym CMR
Project Cosmic ray acceleration, magnetic field and radiation hydrodynamics
Researcher (PI) Anthony Raymond Bell
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Advanced Grant (AdG), PE9, ERC-2009-AdG
Summary Diffusive shock acceleration is widely acknowledged as the most likely source of cosmic rays and high energy particles. The basic macroscopic theory of how cosmic rays gain energy during multiple shock crossings is well known, but the microphysics of the interaction between cosmic rays (CR) and the MHD background fluid remained poorly understood before the recent discovery of a new non-resonant instability by which the CR precursor could greatly amplify the ambient magnetic field. The aims of the project are: 1) to develop the first self-consistent non-linear simulation of the CR/MHD interaction; to calculate the magnitude of the saturated magnetic field and the maximum energy to which CR are accelerated. We will characterise the structure of the amplified magnetic field and compare it with x-ray observations of the time-evolving outer shock of supernova remnants (SNR). We will investigate the effect of various orientations of the shock relative to the ambient magnetic field, the effect of non-diffusive transport on the energy spectrum and CR escape from the SNR, and how these match observation. 2) to extend the simulation to relativistic shocks as found in gamma-ray bursts (GRB) and active galactic nuclei (AGN); to establish whether the non-resonant instability operates effectively at relativistic shock velocities, whether it explains the large magnetic field found in GRB, and determine the maximum CR energy achieved by relativistic shocks. 3) to investigate high density shocks in GRB, x-ray flashes (XRF) and supernovae (SN) where radiative processes, pair production and other particle/photon and particle/particle interactions are important. We shall investigate CR acceleration on SN shock breakout and very young SNR as a possible source of very high energy CR.
Summary
Diffusive shock acceleration is widely acknowledged as the most likely source of cosmic rays and high energy particles. The basic macroscopic theory of how cosmic rays gain energy during multiple shock crossings is well known, but the microphysics of the interaction between cosmic rays (CR) and the MHD background fluid remained poorly understood before the recent discovery of a new non-resonant instability by which the CR precursor could greatly amplify the ambient magnetic field. The aims of the project are: 1) to develop the first self-consistent non-linear simulation of the CR/MHD interaction; to calculate the magnitude of the saturated magnetic field and the maximum energy to which CR are accelerated. We will characterise the structure of the amplified magnetic field and compare it with x-ray observations of the time-evolving outer shock of supernova remnants (SNR). We will investigate the effect of various orientations of the shock relative to the ambient magnetic field, the effect of non-diffusive transport on the energy spectrum and CR escape from the SNR, and how these match observation. 2) to extend the simulation to relativistic shocks as found in gamma-ray bursts (GRB) and active galactic nuclei (AGN); to establish whether the non-resonant instability operates effectively at relativistic shock velocities, whether it explains the large magnetic field found in GRB, and determine the maximum CR energy achieved by relativistic shocks. 3) to investigate high density shocks in GRB, x-ray flashes (XRF) and supernovae (SN) where radiative processes, pair production and other particle/photon and particle/particle interactions are important. We shall investigate CR acceleration on SN shock breakout and very young SNR as a possible source of very high energy CR.
Max ERC Funding
900 024 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym CULTRWORLD
Project The evolution of cultural norms in real world settings
Researcher (PI) Ruth Helen Mace
Host Institution (HI) University College London
Country United Kingdom
Call Details Advanced Grant (AdG), SH4, ERC-2009-AdG
Summary An intense debate is raging within evolutionary anthropology as to whether the evolution of human behaviour is driven by selection pressure on the individual or on the group. Until recently there was consensus amongst evolutionary biologists and evolutionary anthropologists that natural selection caused behaviours to evolve that benefit the individual or close kin. However the idea that cultural behaviours that favour the group can evolve, even at the expense of individual well-being, is now being supported by some evolutionary anthropologists and economists. Models of cultural group selection rely on patterns of cultural transmission that maintain differences between cultural groups, because either decisions are based on what most others in the group do, or non-conformists are punished in some way. If such biased transmission occurs, then humans may be following a unique evolutionary trajectory towards extreme sociality; such models potentially explain behaviours such as altruism towards non-relatives or limiting your reproductive rate. However, relevant empirical evidence from real world populations, concerning behaviour that potentially influences reproductive success, is almost entirely lacking. The projects proposed here are designed to help fill that gap. In micro-evolutionary studies we will seek evidence for the patterns cultural transmission or social learning that enable cultural group selection to act, and ask how these processes depend on properties of the community, and thus how robust are they to the demographic and societal changes that accompany modernisation. These include studies of the spread of modern contraception through communities; and studies of punishment of selfish players in economic games. In macro-evolutionary studies, we will use phylogenetic cross-cultural comparative methods to show how different cultural traits change over the long term, and ask whether social or ecological variables are driving that cultural change.
Summary
An intense debate is raging within evolutionary anthropology as to whether the evolution of human behaviour is driven by selection pressure on the individual or on the group. Until recently there was consensus amongst evolutionary biologists and evolutionary anthropologists that natural selection caused behaviours to evolve that benefit the individual or close kin. However the idea that cultural behaviours that favour the group can evolve, even at the expense of individual well-being, is now being supported by some evolutionary anthropologists and economists. Models of cultural group selection rely on patterns of cultural transmission that maintain differences between cultural groups, because either decisions are based on what most others in the group do, or non-conformists are punished in some way. If such biased transmission occurs, then humans may be following a unique evolutionary trajectory towards extreme sociality; such models potentially explain behaviours such as altruism towards non-relatives or limiting your reproductive rate. However, relevant empirical evidence from real world populations, concerning behaviour that potentially influences reproductive success, is almost entirely lacking. The projects proposed here are designed to help fill that gap. In micro-evolutionary studies we will seek evidence for the patterns cultural transmission or social learning that enable cultural group selection to act, and ask how these processes depend on properties of the community, and thus how robust are they to the demographic and societal changes that accompany modernisation. These include studies of the spread of modern contraception through communities; and studies of punishment of selfish players in economic games. In macro-evolutionary studies, we will use phylogenetic cross-cultural comparative methods to show how different cultural traits change over the long term, and ask whether social or ecological variables are driving that cultural change.
Max ERC Funding
1 801 978 €
Duration
Start date: 2010-05-01, End date: 2016-04-30
Project acronym DENDRITE
Project Cellular and circuit determinants of dendritic computation
Researcher (PI) Michael Andreas Hausser
Host Institution (HI) University College London
Country United Kingdom
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary What is the fundamental unit of computation in the brain? Answering this question is crucial not only for understanding how the brain works, but also for building accurate models of brain function, which require abstraction based on identification of the essential elements for carrying out computations relevant to behaviour. We will directly test the possibility that single dendritic branches may act as individual computational units during behaviour, challenging the classical view that the neuron is the fundamental unit of computation. We will address this question using a combination of electrophysiological, anatomical, imaging, molecular, and modeling approaches to probe dendritic integration in pyramidal cells and Purkinje cells in mouse cortex and cerebellum. We will define the computational rules for integration of synaptic input in dendrites by examining the responses to different spatiotemporal patterns of excitatory and inhibitory inputs. We will use computational modeling to extract simple rules describing dendritic integration that captures the essence of the computation. Next, we will determine how these rules are engaged by patterns of sensory stimulation in vivo, by using various strategies to map the spatiotemporal patterns of synaptic inputs to dendrites. To understand how physiological patterns of activity in the circuit engage these dendritic computations, we will use anatomical approaches to map the wiring diagram of synaptic inputs to individual dendrites. Finally, we will manipulate dendritic function using molecular tools, in order to provide causal links between specific dendritic computations and sensory processing. These experiments will provide us with deeper insights into how single neurons act as computing devices, and how fundamental computations that drive behaviour are implemented on the level of single cells and neural circuits.
Summary
What is the fundamental unit of computation in the brain? Answering this question is crucial not only for understanding how the brain works, but also for building accurate models of brain function, which require abstraction based on identification of the essential elements for carrying out computations relevant to behaviour. We will directly test the possibility that single dendritic branches may act as individual computational units during behaviour, challenging the classical view that the neuron is the fundamental unit of computation. We will address this question using a combination of electrophysiological, anatomical, imaging, molecular, and modeling approaches to probe dendritic integration in pyramidal cells and Purkinje cells in mouse cortex and cerebellum. We will define the computational rules for integration of synaptic input in dendrites by examining the responses to different spatiotemporal patterns of excitatory and inhibitory inputs. We will use computational modeling to extract simple rules describing dendritic integration that captures the essence of the computation. Next, we will determine how these rules are engaged by patterns of sensory stimulation in vivo, by using various strategies to map the spatiotemporal patterns of synaptic inputs to dendrites. To understand how physiological patterns of activity in the circuit engage these dendritic computations, we will use anatomical approaches to map the wiring diagram of synaptic inputs to individual dendrites. Finally, we will manipulate dendritic function using molecular tools, in order to provide causal links between specific dendritic computations and sensory processing. These experiments will provide us with deeper insights into how single neurons act as computing devices, and how fundamental computations that drive behaviour are implemented on the level of single cells and neural circuits.
Max ERC Funding
2 416 078 €
Duration
Start date: 2010-06-01, End date: 2016-05-31
Project acronym DiCED
Project Digital Campaigning and Electoral Democracy
Researcher (PI) Rachel GIBSON
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Country United Kingdom
Call Details Advanced Grant (AdG), SH2, ERC-2018-ADG
Summary Overview: This project will set a new agenda and direction for the study of political campaigns. It will examine whether and how new digital technologies are transforming election campaigns and citizen behaviour in new and established democracies. More specifically, it will assess claims that democracies are now entering a new data-driven era of political campaigning that is profoundly reconfiguring how campaigns’ are run, who runs them and their implications for the quality of voter decision-making, the vibrancy of political parties and ultimately, the future of representative democracy. It will do so in three main stages: (1) First, it will define what data-driven campaigning is and critically assess whether it forms new and distinct era of electioneering in conceptual and historical terms? In particular, it will argue that the two key traits of this new mode of campaigning are the increased individualization or micro-targeting of party messages and the automated use of misinformation to mobilize and persuade voters. (2) Based on this definition it will map the ‘supply’ of the new mode of campaigning across new and older democracies by designing an innovative new index to compare use of data-driven techniques by parties. Where is it most commonly seen and why are some parties and countries more likely to promote its growth? (3) Finally, it will assess the impact of these new methods on key political actors and assess the consequences for the longer term future of liberal democracy. Does use of these techniques help counter recent declines in voter turnout by identifying under-mobilized groups? Or, do they ensure parties focus on the already engaged, bypassing those that are harder to reach? Can data-driven campaigning improve citizen choices by giving them the information on the issues they primarily care about or does it help to increase disinformation and even manipulation of voter choices?
Summary
Overview: This project will set a new agenda and direction for the study of political campaigns. It will examine whether and how new digital technologies are transforming election campaigns and citizen behaviour in new and established democracies. More specifically, it will assess claims that democracies are now entering a new data-driven era of political campaigning that is profoundly reconfiguring how campaigns’ are run, who runs them and their implications for the quality of voter decision-making, the vibrancy of political parties and ultimately, the future of representative democracy. It will do so in three main stages: (1) First, it will define what data-driven campaigning is and critically assess whether it forms new and distinct era of electioneering in conceptual and historical terms? In particular, it will argue that the two key traits of this new mode of campaigning are the increased individualization or micro-targeting of party messages and the automated use of misinformation to mobilize and persuade voters. (2) Based on this definition it will map the ‘supply’ of the new mode of campaigning across new and older democracies by designing an innovative new index to compare use of data-driven techniques by parties. Where is it most commonly seen and why are some parties and countries more likely to promote its growth? (3) Finally, it will assess the impact of these new methods on key political actors and assess the consequences for the longer term future of liberal democracy. Does use of these techniques help counter recent declines in voter turnout by identifying under-mobilized groups? Or, do they ensure parties focus on the already engaged, bypassing those that are harder to reach? Can data-driven campaigning improve citizen choices by giving them the information on the issues they primarily care about or does it help to increase disinformation and even manipulation of voter choices?
Max ERC Funding
2 499 394 €
Duration
Start date: 2020-02-01, End date: 2025-01-31
Project acronym DISKtoHALO
Project From the accretion disk to the cluster halo: the multi-scale physics of black hole feedback
Researcher (PI) Christopher REYNOLDS
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), PE9, ERC-2018-ADG
Summary It is firmly established that supermassive black holes (SMBHs) have a profound influence on the evolution of galaxies and galaxy groups/clusters. Yet, almost 20 years after this realization, fundamental questions remain. What determines the efficiency with which an active galactic nucleus (AGN) couples to its surroundings? Why does AGN feedback appear to be ineffective in low-mass galaxies? In maintenance-mode feedback, how does the AGN regulate to closely balance cooling? How does the nature of AGN feedback change as we consider higher redshifts and push back to the epoch of the first galaxies? AGN feedback is a truly multi-scale phenomenon. Observations show that AGN have an energetic impact on galactic-, group-, and cluster-halo scales. Yet the efficiency with which an accreting SMBH releases energy, and the partitioning of that energy into radiation, winds, and relativistic jets, is dictated by complex processes in the accretion disk on AU scales, 10^10 times smaller than the halo. Furthermore, especially in massive systems where feedback proceeds via the heating of a hot circumgalactic or intracluster medium (CGM/ICM), the relevant microphysics of the hot baryons is unclear, requiring an understanding of plasma instabilities on 10^-9pc scales. We propose a set of projects that explore the multiscale physics of AGN feedback. Magnetohydrodynamic models of accretion disks will be constructed to study the AGN radiation/winds/jets and calibrate observable proxies of SMBH mass and accretion rate. We will use the machinery of plasma physics to characterize the CGM/ICM microphysics relevant to the thermalization of AGN-injected energy. Finally, we will produce new galaxy-, group- and cluster-scale models incorporating the new microphysical prescriptions and AGN models. Our new theoretical understanding of AGN feedback as a function of halo mass, environment, and cosmic time is essential for interpreting the torrent of data from current and future observatories
Summary
It is firmly established that supermassive black holes (SMBHs) have a profound influence on the evolution of galaxies and galaxy groups/clusters. Yet, almost 20 years after this realization, fundamental questions remain. What determines the efficiency with which an active galactic nucleus (AGN) couples to its surroundings? Why does AGN feedback appear to be ineffective in low-mass galaxies? In maintenance-mode feedback, how does the AGN regulate to closely balance cooling? How does the nature of AGN feedback change as we consider higher redshifts and push back to the epoch of the first galaxies? AGN feedback is a truly multi-scale phenomenon. Observations show that AGN have an energetic impact on galactic-, group-, and cluster-halo scales. Yet the efficiency with which an accreting SMBH releases energy, and the partitioning of that energy into radiation, winds, and relativistic jets, is dictated by complex processes in the accretion disk on AU scales, 10^10 times smaller than the halo. Furthermore, especially in massive systems where feedback proceeds via the heating of a hot circumgalactic or intracluster medium (CGM/ICM), the relevant microphysics of the hot baryons is unclear, requiring an understanding of plasma instabilities on 10^-9pc scales. We propose a set of projects that explore the multiscale physics of AGN feedback. Magnetohydrodynamic models of accretion disks will be constructed to study the AGN radiation/winds/jets and calibrate observable proxies of SMBH mass and accretion rate. We will use the machinery of plasma physics to characterize the CGM/ICM microphysics relevant to the thermalization of AGN-injected energy. Finally, we will produce new galaxy-, group- and cluster-scale models incorporating the new microphysical prescriptions and AGN models. Our new theoretical understanding of AGN feedback as a function of halo mass, environment, and cosmic time is essential for interpreting the torrent of data from current and future observatories
Max ERC Funding
2 489 918 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym DIVLAB
Project Consumption Work and Societal Divisions of Labour
Researcher (PI) Miriam Anne Glucksmann
Host Institution (HI) UNIVERSITY OF ESSEX
Country United Kingdom
Call Details Advanced Grant (AdG), SH2, ERC-2009-AdG
Summary Contemporary global developments in work and employment are transforming labour and reshaping relations between workers, creating new webs of interconnection across the world. This research programme aims to radically revise the foundational concept of the division of labour , by situating traditional understandings of the technical allocation of tasks within an expanded theoretical framework. Two additional dimensions of differentiation and interdependency of work activities are proposed, namely across socio-economic modes (market, non-market, etc.) and across the economic processes of production, distribution, exchange, and preparation for consumption. The approach will be developed by opening up a new research terrain of consumption work : all work undertaken by consumers necessary for the purchase, use, re-use and disposal of consumption goods. The work of consumers is shaped by its interdependency with that of providers, and vice versa, so providing a key to route to understanding the overall dynamics and variety of changing worlds of work. Three contrasting empirical probes are chosen for the questions each raises about consumption work and its increasing socio-economic importance: domestic broadband installation, food preparation and household recycling of waste. Analysis will centre for each on the varying nature of the interface and interaction between consumption work and systems of provision in five comparator countries (UK, Sweden, France, Taiwan, Korea) selected for their contrasting socio-economies. The research programme is global, comparative and historical, making a significant scientific and policy contribution, by advancing comprehension of key processes of ongoing socio-economic change, and establishing consumption work as a new field of enquiry.
Summary
Contemporary global developments in work and employment are transforming labour and reshaping relations between workers, creating new webs of interconnection across the world. This research programme aims to radically revise the foundational concept of the division of labour , by situating traditional understandings of the technical allocation of tasks within an expanded theoretical framework. Two additional dimensions of differentiation and interdependency of work activities are proposed, namely across socio-economic modes (market, non-market, etc.) and across the economic processes of production, distribution, exchange, and preparation for consumption. The approach will be developed by opening up a new research terrain of consumption work : all work undertaken by consumers necessary for the purchase, use, re-use and disposal of consumption goods. The work of consumers is shaped by its interdependency with that of providers, and vice versa, so providing a key to route to understanding the overall dynamics and variety of changing worlds of work. Three contrasting empirical probes are chosen for the questions each raises about consumption work and its increasing socio-economic importance: domestic broadband installation, food preparation and household recycling of waste. Analysis will centre for each on the varying nature of the interface and interaction between consumption work and systems of provision in five comparator countries (UK, Sweden, France, Taiwan, Korea) selected for their contrasting socio-economies. The research programme is global, comparative and historical, making a significant scientific and policy contribution, by advancing comprehension of key processes of ongoing socio-economic change, and establishing consumption work as a new field of enquiry.
Max ERC Funding
810 437 €
Duration
Start date: 2010-04-01, End date: 2013-12-31
Project acronym EVO500
Project Origin of a cell differentiation mechanism and its evolution over 500 million years of life on land
Researcher (PI) Liam Dolan
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Advanced Grant (AdG), LS3, ERC-2009-AdG
Summary The evolution of the first rooting systems approximately 470 million years ago was a critical event in the history of life on Earth because it allowed the growth of complex multicellular eukaryotic photosynthetic organisms – plants - on the surface of the land. Rooting systems are important because they facilitate the uptake of every chemical element in the plant body with the exception of carbon. The root systems of the
first land plants (liverworts) comprised a mass of unicellular tip-growing filaments (rhizoids) that grew from the plant surface into the soil. All root systems that evolved since then similarly comprise a system of tipgrowing filamentous cells located at the interface between the plant and the soil, indicating that the differentiation of filamentous root cells has been critical for root function for the past 470 million years. This proposal aims to characterize the origin and evolution of this essential cellular differentiation process. The proposed research is in three parts:
First we propose to define the mechanism that controlled the development of the first land plant root system by identifying genes that control liverwort rooting system (rhizoids) development and
characterizing their regulatory interactions.
Second we propose to determine if the mechanism that controlled the development of the first land
plant root system was inherited from algal ancestors.
Third we propose to characterize the mechanism that controls filamentous root hair growth in
Arabidopsis in response to environmental factors, and determine if it is conserved among land
plants.
In combination, these experiments will define the genetic mechanisms underpinning the development and evolution of one of the fundamental developmental processes in land plants.
Summary
The evolution of the first rooting systems approximately 470 million years ago was a critical event in the history of life on Earth because it allowed the growth of complex multicellular eukaryotic photosynthetic organisms – plants - on the surface of the land. Rooting systems are important because they facilitate the uptake of every chemical element in the plant body with the exception of carbon. The root systems of the
first land plants (liverworts) comprised a mass of unicellular tip-growing filaments (rhizoids) that grew from the plant surface into the soil. All root systems that evolved since then similarly comprise a system of tipgrowing filamentous cells located at the interface between the plant and the soil, indicating that the differentiation of filamentous root cells has been critical for root function for the past 470 million years. This proposal aims to characterize the origin and evolution of this essential cellular differentiation process. The proposed research is in three parts:
First we propose to define the mechanism that controlled the development of the first land plant root system by identifying genes that control liverwort rooting system (rhizoids) development and
characterizing their regulatory interactions.
Second we propose to determine if the mechanism that controlled the development of the first land
plant root system was inherited from algal ancestors.
Third we propose to characterize the mechanism that controls filamentous root hair growth in
Arabidopsis in response to environmental factors, and determine if it is conserved among land
plants.
In combination, these experiments will define the genetic mechanisms underpinning the development and evolution of one of the fundamental developmental processes in land plants.
Max ERC Funding
2 463 835 €
Duration
Start date: 2010-10-01, End date: 2015-09-30