Project acronym ABEP
Project Asset Bubbles and Economic Policy
Researcher (PI) Jaume Ventura Fontanet
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Country Spain
Call Details Advanced Grant (AdG), SH1, ERC-2009-AdG
Summary Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Summary
Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Max ERC Funding
1 000 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym NOQIA
Project NOvel Quantum simulators – connectIng Areas
Researcher (PI) Maciej Lewenstein
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Country Spain
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary Quantum simulators (QS) are experimental systems that allow mimic hard to simulate models of condensed matter, high energy physics and beyond. QS have various platforms: from ultracold atoms and ions to superconducting qubits. They constitute the important pillar of quantum technologies (QT), and promise future applications in chemistry, material science and optimization problems. Over the last decade, QS were particularly successful in mimicking topological effects in physics (TEP) and in developing accurate quantum validation/certification (QVC) methods. NOQIA is a theory project, aimed at introducing the established field of QS+TEP+QVC into two novel areas: physics of ultrafast phenomena and attoscience (AS) on one side, and quantum machine learning (ML) and neural networks (NN) on the other. This will open up new horizons/opportunities for research both in AS and in ML/NN. For instance, in AS we will address the question if intense laser physics may serve as a tool to detect topological effects in solid state and strongly correlated systems. We will study response of matter to laser pulses carrying topological signatures, to determine if they can induce topological effects in targets. We will design/analyze QS using trapped atoms to understand and detect TEP in the AS. On the ML/NN side, we will apply classical ML to analyze, design and control QS for topological systems, in order to understand and optimize them. Conversely, we will transfer many-body techniques to ML in order to analyze and possibly improve performance of classical machine learning. We will design and analyze quantum neural network devices that will employ topology in order to achieve robust quantum memory or information processing. We will design/study attractor neural networks with topological stationary states, or feed-forward networks with topological Floquet and time-crystal states. Both in AS and ML/NN, NOQIA will rely on quantum validation and certification protocols and techniques.
Summary
Quantum simulators (QS) are experimental systems that allow mimic hard to simulate models of condensed matter, high energy physics and beyond. QS have various platforms: from ultracold atoms and ions to superconducting qubits. They constitute the important pillar of quantum technologies (QT), and promise future applications in chemistry, material science and optimization problems. Over the last decade, QS were particularly successful in mimicking topological effects in physics (TEP) and in developing accurate quantum validation/certification (QVC) methods. NOQIA is a theory project, aimed at introducing the established field of QS+TEP+QVC into two novel areas: physics of ultrafast phenomena and attoscience (AS) on one side, and quantum machine learning (ML) and neural networks (NN) on the other. This will open up new horizons/opportunities for research both in AS and in ML/NN. For instance, in AS we will address the question if intense laser physics may serve as a tool to detect topological effects in solid state and strongly correlated systems. We will study response of matter to laser pulses carrying topological signatures, to determine if they can induce topological effects in targets. We will design/analyze QS using trapped atoms to understand and detect TEP in the AS. On the ML/NN side, we will apply classical ML to analyze, design and control QS for topological systems, in order to understand and optimize them. Conversely, we will transfer many-body techniques to ML in order to analyze and possibly improve performance of classical machine learning. We will design and analyze quantum neural network devices that will employ topology in order to achieve robust quantum memory or information processing. We will design/study attractor neural networks with topological stationary states, or feed-forward networks with topological Floquet and time-crystal states. Both in AS and ML/NN, NOQIA will rely on quantum validation and certification protocols and techniques.
Max ERC Funding
2 164 244 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym OVER-HER2
Project OVErcoming Resistance to anti-HER2 therapy
Researcher (PI) Jose Manuel Baselga Torres
Host Institution (HI) FUNDACIO PRIVADA INSTITUT D'INVESTIGACIO ONCOLOGICA DE VALL-HEBRON (VHIO)
Country Spain
Call Details Advanced Grant (AdG), LS4, ERC-2009-AdG
Summary HER2 is a membrane receptor tyrosine kinase overexpressed in 30% of breast tumors and results in an aggressive clinical course. Anti-HER2 therapies including monoclonal antibodies (trastuzumab) and small-molecule tyrosine kinase inhibitors (lapatinib) are active and have improved survival of patients with HER2 overexpressing breast cancer. However, the emergence of primary or acquired resistance to these agents limits their efficacy. We have previously identified mechanisms of resistance to anti-HER2 therapies such as the co-expression of a truncated form of HER2 that correlates with trastuzumab resistance or the presence of downstream oncogenic mutations of PI3K or PTEN loss that result in resistance to lapatinib . Not surprisingly, PI3K/mTOR inhibitors overcome lapatinib resistance in the later example. Building on our results to date, this proposal is aimed at identifying novel mechanisms of resistance to anti-HER2 agents and to devise therapeutic strategies to revert it. To uncover such mechanisms, we have generated cancer cells with acquired resistance to lapatinib or trastuzumab by continuous exposure to increasing concentrations of these agents. We will perform genome wide screens, including shRNA libraries, gene expression and SNPs arrays, to discover candidate genes responsible for decreased sensitivity to anti-HER2 agents. To overcome anti-HER2 therapy resistance we will study several therapeutic strategies, such as combinations of different anti-HER2 compounds and the use of alternative agents targeting downstream/parallel pathways. Among the novel targeted therapies, we plan to study the use of PI3K, Akt, CDK2 and Hsp90 inhibitors, for which we will also start resistance-screens. It is anticipated that any promising preclinical leads will stimulate trial design and conduct for subsequent evaluation and confirmation in the clinic.
Summary
HER2 is a membrane receptor tyrosine kinase overexpressed in 30% of breast tumors and results in an aggressive clinical course. Anti-HER2 therapies including monoclonal antibodies (trastuzumab) and small-molecule tyrosine kinase inhibitors (lapatinib) are active and have improved survival of patients with HER2 overexpressing breast cancer. However, the emergence of primary or acquired resistance to these agents limits their efficacy. We have previously identified mechanisms of resistance to anti-HER2 therapies such as the co-expression of a truncated form of HER2 that correlates with trastuzumab resistance or the presence of downstream oncogenic mutations of PI3K or PTEN loss that result in resistance to lapatinib . Not surprisingly, PI3K/mTOR inhibitors overcome lapatinib resistance in the later example. Building on our results to date, this proposal is aimed at identifying novel mechanisms of resistance to anti-HER2 agents and to devise therapeutic strategies to revert it. To uncover such mechanisms, we have generated cancer cells with acquired resistance to lapatinib or trastuzumab by continuous exposure to increasing concentrations of these agents. We will perform genome wide screens, including shRNA libraries, gene expression and SNPs arrays, to discover candidate genes responsible for decreased sensitivity to anti-HER2 agents. To overcome anti-HER2 therapy resistance we will study several therapeutic strategies, such as combinations of different anti-HER2 compounds and the use of alternative agents targeting downstream/parallel pathways. Among the novel targeted therapies, we plan to study the use of PI3K, Akt, CDK2 and Hsp90 inhibitors, for which we will also start resistance-screens. It is anticipated that any promising preclinical leads will stimulate trial design and conduct for subsequent evaluation and confirmation in the clinic.
Max ERC Funding
1 666 700 €
Duration
Start date: 2011-01-01, End date: 2014-12-31
Project acronym PELE
Project P.E.L.E (Protein Energy Landscape Exploration): a la carte drug design tools
Researcher (PI) Victor Guallar
Host Institution (HI) BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL DE SUPERCOMPUTACION
Country Spain
Call Details Advanced Grant (AdG), LS7, ERC-2009-AdG
Summary The goal of this project is to provide, to the large community of scientist working in molecular target therapies, a fast and accurate tool capable of obtaining an atomic detailed mechanism of the protein-ligand induced fit, of its recognition process and of the ligand migration. Understanding these aspects is essential to obtain better drugs with the ability, for example, of bypassing drug resistance induced by protein mutations. This resistance mechanism is currently a fundamental process that will be increasing substantially with further development of specific molecular targets. The main ideas are based on state of the art methodologies recently developed in our laboratory capable of describing these processes. PELE, our novel technology based on protein structure prediction algorithms and a Monte Carlo sampling, is capable of describing the all atom dynamical interaction between a protein and a ligand. The proposed objectives includes: 1) Continue the methodological development of PELE, 2) developing automatic protocols for the study of the drug-protein dynamical interaction, and 3) building a web server allowing public use of these development The resulting technology will allow scientist to understand the atomic mechanism for drug delivery, drug resistance, etc., in only few days, approximately in 100 hours of CPU, allowing for a la carte design of improved inhibitors in a timely fast manner (essential when probing hundreds of compounds!). The development of the modelling tools, disseminated and freely accessible by means of a web server, will be conducted at the Barcelona Supercomputing Center, the Spanish national supercomputing center with one of the best computational infrastructures in Europe.
Summary
The goal of this project is to provide, to the large community of scientist working in molecular target therapies, a fast and accurate tool capable of obtaining an atomic detailed mechanism of the protein-ligand induced fit, of its recognition process and of the ligand migration. Understanding these aspects is essential to obtain better drugs with the ability, for example, of bypassing drug resistance induced by protein mutations. This resistance mechanism is currently a fundamental process that will be increasing substantially with further development of specific molecular targets. The main ideas are based on state of the art methodologies recently developed in our laboratory capable of describing these processes. PELE, our novel technology based on protein structure prediction algorithms and a Monte Carlo sampling, is capable of describing the all atom dynamical interaction between a protein and a ligand. The proposed objectives includes: 1) Continue the methodological development of PELE, 2) developing automatic protocols for the study of the drug-protein dynamical interaction, and 3) building a web server allowing public use of these development The resulting technology will allow scientist to understand the atomic mechanism for drug delivery, drug resistance, etc., in only few days, approximately in 100 hours of CPU, allowing for a la carte design of improved inhibitors in a timely fast manner (essential when probing hundreds of compounds!). The development of the modelling tools, disseminated and freely accessible by means of a web server, will be conducted at the Barcelona Supercomputing Center, the Spanish national supercomputing center with one of the best computational infrastructures in Europe.
Max ERC Funding
1 399 999 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym PLANTGROWTH
Project Exploiting genome replication to design improved plant growth strategies
Researcher (PI) Crisanto GUTIERREZ
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), LS9, ERC-2018-ADG
Summary This project will identify the principles governing genome replication in relation to the chromatin landscape and how they impact on plant organ growth. The results will provide the basis to design novel strategies to improve plant growth performance.
The large plant genomes, as in all eukaryotes, must be faithfully duplicated every cell cycle, a process regulated at the level of DNA replication origins (ORIs). Our understanding of how ORIs are determined is still very limited. Most of our knowledge comes from cultured cells, precluding the identification of regulatory layers operating at the organism level. Importantly, genome replication can offer unexplored possibilities to modulate plant architecture and growth and, consequently, plant performance.
Results generated so far unable us to address a fundamental question: what are the regulatory mechanisms of DNA and genome replication and how they can be exploited to design improved plant growth strategies. This innovative perspective will reveal how genome replication is regulated by DNA sequence context, replication factors and chromatin landscape. Integration of molecular, cellular, genomic and genetic approaches in a whole organism will serve to evaluate the phenotypic effects of modulating genome replication on organ growth. We will also learn how DNA replication control is exerted during endoreplication and in coordination with transcriptional programs, both crucial for plant organogenesis, growth and response to environmental stresses.
This program goes beyond incremental research, is timely, innovative, ambitious but realistic, and high risk/high gain, combining different approaches to address a fundamental process. Given the conservation of proteins and pathways, and the availability of well-annotated genomic information for many plant species, PLANTGROWTH will pave the way to translate the technological and conceptual know-how derived from this program to crop species to improve yield.
Summary
This project will identify the principles governing genome replication in relation to the chromatin landscape and how they impact on plant organ growth. The results will provide the basis to design novel strategies to improve plant growth performance.
The large plant genomes, as in all eukaryotes, must be faithfully duplicated every cell cycle, a process regulated at the level of DNA replication origins (ORIs). Our understanding of how ORIs are determined is still very limited. Most of our knowledge comes from cultured cells, precluding the identification of regulatory layers operating at the organism level. Importantly, genome replication can offer unexplored possibilities to modulate plant architecture and growth and, consequently, plant performance.
Results generated so far unable us to address a fundamental question: what are the regulatory mechanisms of DNA and genome replication and how they can be exploited to design improved plant growth strategies. This innovative perspective will reveal how genome replication is regulated by DNA sequence context, replication factors and chromatin landscape. Integration of molecular, cellular, genomic and genetic approaches in a whole organism will serve to evaluate the phenotypic effects of modulating genome replication on organ growth. We will also learn how DNA replication control is exerted during endoreplication and in coordination with transcriptional programs, both crucial for plant organogenesis, growth and response to environmental stresses.
This program goes beyond incremental research, is timely, innovative, ambitious but realistic, and high risk/high gain, combining different approaches to address a fundamental process. Given the conservation of proteins and pathways, and the availability of well-annotated genomic information for many plant species, PLANTGROWTH will pave the way to translate the technological and conceptual know-how derived from this program to crop species to improve yield.
Max ERC Funding
2 497 800 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym SILK-EYE
Project Silk-based ocular implants: treating eye conditions at the interface of photonics and biology
Researcher (PI) Susana Marcos Celestino
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary Prevalent eye diseases, such as myopia, presbyopia, and corneal disease affect millions worldwide, but for now cannot be prevented. Surgical interventions of these conditions are turning to additive surgery, exemplified by corneal implants or the replacement of the natural crystalline lens by (or addition of) an intraocular lens, as it reduces complications of tissue removal surgeries.
Current eye treatments involving adding tissue or lenses exist in the form of amnion bandages, corneal inlays, and intraocular lenses. However, those approaches suffer from a number of shortcomings: corneal haze or rejection; risk of disease transmission, short lifespan, need of cryopreservation and donor tissue; lack of compliance of lens designs and biomaterials. In particular, no material has been found that fully meets the requirements for mechanical properties, transparency, biocompatibility and versatility for applications in the cornea and in accommodating intraocular lenses.
In recent years, silk fibroin derived from silkworm cocoons has emerged as a protein polymer for biomaterial applications. SILK-EYE will develop a new generation of corneal and intraocular implants, using silk-based materials tuned to each specific application and light enabling procedure. The silk-based implants will feature both the accessibility advantages of synthetic materials and the structural and biocompatibility properties of allografts, capitalizing on silk’s unique potential for transparency, controllable stiffness and degradability, refractive index and permeability, and their potential for light-induced cross-linking and bonding in the eye. SILK-EYE will design radically novel corneal dressings and implants, and accommodating intraocular lenses that are more biocompatible and functional than current synthetic implants, and are safer, more tunable, accessible and affordable than donor allografts, potentially revolutionizing how the major corrective procedures in ophthalmology are performed.
Summary
Prevalent eye diseases, such as myopia, presbyopia, and corneal disease affect millions worldwide, but for now cannot be prevented. Surgical interventions of these conditions are turning to additive surgery, exemplified by corneal implants or the replacement of the natural crystalline lens by (or addition of) an intraocular lens, as it reduces complications of tissue removal surgeries.
Current eye treatments involving adding tissue or lenses exist in the form of amnion bandages, corneal inlays, and intraocular lenses. However, those approaches suffer from a number of shortcomings: corneal haze or rejection; risk of disease transmission, short lifespan, need of cryopreservation and donor tissue; lack of compliance of lens designs and biomaterials. In particular, no material has been found that fully meets the requirements for mechanical properties, transparency, biocompatibility and versatility for applications in the cornea and in accommodating intraocular lenses.
In recent years, silk fibroin derived from silkworm cocoons has emerged as a protein polymer for biomaterial applications. SILK-EYE will develop a new generation of corneal and intraocular implants, using silk-based materials tuned to each specific application and light enabling procedure. The silk-based implants will feature both the accessibility advantages of synthetic materials and the structural and biocompatibility properties of allografts, capitalizing on silk’s unique potential for transparency, controllable stiffness and degradability, refractive index and permeability, and their potential for light-induced cross-linking and bonding in the eye. SILK-EYE will design radically novel corneal dressings and implants, and accommodating intraocular lenses that are more biocompatible and functional than current synthetic implants, and are safer, more tunable, accessible and affordable than donor allografts, potentially revolutionizing how the major corrective procedures in ophthalmology are performed.
Max ERC Funding
2 499 610 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym SUMMIT
Project Novel roles of dimethylated sulphur in marine microbial interactions
Researcher (PI) Rafael (Rafel) SIMO
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), LS8, ERC-2018-ADG
Summary Sulphur is an essential element for life that cycles rapidly in the pelagic ocean in the form of biogenic dimethylated compounds. Over three decades, dimethylated sulphur has been intensively investigated for its emission to the atmosphere and its suggested roles in returning sulphur to continents and in climate regulation. While the climate connection still awaits definitive confirmation or denial, these research efforts have provided important advances in plankton physiology and ecology, since these forms of sulphur arise from organism adaptation to saline and sunlit waters and are integral to the food web machinery. Previous studies have disclosed biochemical and trophic cycling pathways and their taxonomic affiliations. Also, evidence for their behaviour as infochemicals in organism-organism communication has been obtained. However, their contribution to the functioning of marine ecosystems remains largely unexplored, particularly with respect to the emerging renewed picture of food webs, where classical functional roles blur and concepts like multifunctional organisms and interdependence become the rule rather than the exception. I propose to bridge microbial physiology, ecology and biogeochemistry to explore new roles of dimethylated sulphur in microbial food-web interactions. I will build upon a combination of molecular tools, isotopes, single-cell analyses, physiological dyes, chemotaxis experiments, modelling, sea-going opportunities and an existing collection of samples from diverse oceanic biomes. Hypothesis-driven research is expected to yield paradigm shifts in (i) phytoplankton-bacteria interactions through nitrogen fixation and vitamin exchange; (ii) phytoplankton-phytoplankton interactions to overcome energy limitation to growth; (iii) phytoplankton-herbivore interactions for selective grazing on weakened prey. Overall, I intend to assess if interactions through dimethylated sulphur make microbial food-webs more robust and efficient.
Summary
Sulphur is an essential element for life that cycles rapidly in the pelagic ocean in the form of biogenic dimethylated compounds. Over three decades, dimethylated sulphur has been intensively investigated for its emission to the atmosphere and its suggested roles in returning sulphur to continents and in climate regulation. While the climate connection still awaits definitive confirmation or denial, these research efforts have provided important advances in plankton physiology and ecology, since these forms of sulphur arise from organism adaptation to saline and sunlit waters and are integral to the food web machinery. Previous studies have disclosed biochemical and trophic cycling pathways and their taxonomic affiliations. Also, evidence for their behaviour as infochemicals in organism-organism communication has been obtained. However, their contribution to the functioning of marine ecosystems remains largely unexplored, particularly with respect to the emerging renewed picture of food webs, where classical functional roles blur and concepts like multifunctional organisms and interdependence become the rule rather than the exception. I propose to bridge microbial physiology, ecology and biogeochemistry to explore new roles of dimethylated sulphur in microbial food-web interactions. I will build upon a combination of molecular tools, isotopes, single-cell analyses, physiological dyes, chemotaxis experiments, modelling, sea-going opportunities and an existing collection of samples from diverse oceanic biomes. Hypothesis-driven research is expected to yield paradigm shifts in (i) phytoplankton-bacteria interactions through nitrogen fixation and vitamin exchange; (ii) phytoplankton-phytoplankton interactions to overcome energy limitation to growth; (iii) phytoplankton-herbivore interactions for selective grazing on weakened prey. Overall, I intend to assess if interactions through dimethylated sulphur make microbial food-webs more robust and efficient.
Max ERC Funding
2 499 187 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym YoctoLHC
Project Yoctosecond imaging of QCD collectivity using jet observables
Researcher (PI) Carlos SALGADO
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Country Spain
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary QCD is the only sector of the Standard Model where the exploration of the first levels of complexity, built from fundamental interactions at the quantum level, is experimentally feasible. An outstanding example is the thermalised state of QCD matter formed when heavy atomic nuclei are smashed in particle colliders. Systematic experimental studies, carried out in the last two decades, overwhelmingly support the picture of a deconfined state of matter, which behaves as a nearly perfect fluid, formed in a very short time, less than 5 yoctoseconds. The mechanism that so efficiently brings the initial out-of-equilibrium state into a thermalised system is, however, largely unknown. Most surprisingly, LHC experiments have found that collisions of small systems, i.e. proton-proton or proton-lead, seem to indicate the presence of a tiny drop of this fluid in events with a large number of produced particles. These systems have sizes of 1 fm or less, or time-scales of less than 3 ys. To add to the puzzle, jet quenching, the modifications of jet properties due to interactions with the medium, has not been observed in these small systems, while jet quenching and thermalisation are expected to be controlled by the same dynamics. Present experimental tools have limited sensitivity to the actual process of thermalisation. To solve these long-standing questions we propose, as a completely novel strategy, using jet observables to directly access the first yoctoseconds of the collision. This strategy needs developments well beyond the state-of-the-art in three subjects: i) novel theoretical descriptions of the initial stages of the collision — the first 5 ys; ii) jet quenching theory for yoctosecond precision, with new techniques to couple the jet to the surrounding matter and novel parton shower evolution; and iii) jet quenching tools for the 2020’s, where completely novel jet observables will be devised with a focus on determining the initial stages of the collision.
Summary
QCD is the only sector of the Standard Model where the exploration of the first levels of complexity, built from fundamental interactions at the quantum level, is experimentally feasible. An outstanding example is the thermalised state of QCD matter formed when heavy atomic nuclei are smashed in particle colliders. Systematic experimental studies, carried out in the last two decades, overwhelmingly support the picture of a deconfined state of matter, which behaves as a nearly perfect fluid, formed in a very short time, less than 5 yoctoseconds. The mechanism that so efficiently brings the initial out-of-equilibrium state into a thermalised system is, however, largely unknown. Most surprisingly, LHC experiments have found that collisions of small systems, i.e. proton-proton or proton-lead, seem to indicate the presence of a tiny drop of this fluid in events with a large number of produced particles. These systems have sizes of 1 fm or less, or time-scales of less than 3 ys. To add to the puzzle, jet quenching, the modifications of jet properties due to interactions with the medium, has not been observed in these small systems, while jet quenching and thermalisation are expected to be controlled by the same dynamics. Present experimental tools have limited sensitivity to the actual process of thermalisation. To solve these long-standing questions we propose, as a completely novel strategy, using jet observables to directly access the first yoctoseconds of the collision. This strategy needs developments well beyond the state-of-the-art in three subjects: i) novel theoretical descriptions of the initial stages of the collision — the first 5 ys; ii) jet quenching theory for yoctosecond precision, with new techniques to couple the jet to the surrounding matter and novel parton shower evolution; and iii) jet quenching tools for the 2020’s, where completely novel jet observables will be devised with a focus on determining the initial stages of the collision.
Max ERC Funding
2 497 750 €
Duration
Start date: 2019-10-01, End date: 2024-09-30