Project acronym CENDUP
Project Decoding the mechanisms of centrosome duplication
Researcher (PI) Pierre Goenczy
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Advanced Grant (AdG), LS3, ERC-2008-AdG
Summary Centrosome duplication entails the formation of a single procentriole next to each centriole once per cell cycle. The mechanisms governing procentriole formation are poorly understood and constitute a fundamental open question in cell biology. We will launch an innovative multidisciplinary research program to gain significant insight into these mechanisms using C. elegans and human cells. This research program is also expected to have a significant impact by contributing important novel assays to the field. Six specific aims will be pursued: 1) SAS-6 as a ZYG-1 substrate: mechanisms of procentriole formation in C. elegans. We will test in vivo the consequence of SAS-6 phosphorylation by ZYG-1. 2) Biochemical and structural analysis of SAS-6-containing macromolecular complexes (SAMACs). We will isolate and characterize SAMACs from C. elegans embryos and human cells, and analyze their structure using single-particle electron microscopy. 3) Novel cell-free assay for procentriole formation in human cells. We will develop such an assay and use it to test whether SAMACs can direct procentriole formation and whether candidate proteins are needed at centrioles or in the cytoplasm. 4) Mapping interactions between centriolar proteins in live human cells. We will use chemical methods developed by our collaborators to probe interactions between HsSAS-6 and centriolar proteins in a time- and space-resolved manner. 5) Functional genomic and chemical genetic screens in human cells. We will conduct high-throughput fluorescence-based screens in human cells to identify novel genes required for procentriole formation and small molecule inhibitors of this process. 6) Mechanisms underlying differential centriolar maintenance in the germline. In C. elegans, we will characterize how the sas-1 locus is required for centriole maintenance during spermatogenesis, as well as analyze centriole elimination during oogenesis and identify components needed for this process
Summary
Centrosome duplication entails the formation of a single procentriole next to each centriole once per cell cycle. The mechanisms governing procentriole formation are poorly understood and constitute a fundamental open question in cell biology. We will launch an innovative multidisciplinary research program to gain significant insight into these mechanisms using C. elegans and human cells. This research program is also expected to have a significant impact by contributing important novel assays to the field. Six specific aims will be pursued: 1) SAS-6 as a ZYG-1 substrate: mechanisms of procentriole formation in C. elegans. We will test in vivo the consequence of SAS-6 phosphorylation by ZYG-1. 2) Biochemical and structural analysis of SAS-6-containing macromolecular complexes (SAMACs). We will isolate and characterize SAMACs from C. elegans embryos and human cells, and analyze their structure using single-particle electron microscopy. 3) Novel cell-free assay for procentriole formation in human cells. We will develop such an assay and use it to test whether SAMACs can direct procentriole formation and whether candidate proteins are needed at centrioles or in the cytoplasm. 4) Mapping interactions between centriolar proteins in live human cells. We will use chemical methods developed by our collaborators to probe interactions between HsSAS-6 and centriolar proteins in a time- and space-resolved manner. 5) Functional genomic and chemical genetic screens in human cells. We will conduct high-throughput fluorescence-based screens in human cells to identify novel genes required for procentriole formation and small molecule inhibitors of this process. 6) Mechanisms underlying differential centriolar maintenance in the germline. In C. elegans, we will characterize how the sas-1 locus is required for centriole maintenance during spermatogenesis, as well as analyze centriole elimination during oogenesis and identify components needed for this process
Max ERC Funding
2 004 155 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym DROSOPHILASIGNALING
Project Signaling Pathways Controlling Patterning, Growth and Final Size of Drosophila Limbs
Researcher (PI) Konrad Basler
Host Institution (HI) University of Zurich
Country Switzerland
Call Details Advanced Grant (AdG), LS3, ERC-2008-AdG
Summary Developmental biology seeks not only to learn more about the fundamental processes of growth and pattern per se, but to understand how they synergize to enable the morphogenesis of multicellular organisms. Our goal is to perform real-time analyses of these developmental processes in an intact developing organ. By applying a vital imaging approach, we can circumvent the normal limitations of inferring cellular dynamics from static images or molecular data, and obtain the real dynamic view of growth and patterning. The wing imaginal disc of Drosophila, which starts out as a simple epithelial structure and gives rise to a precisely structured adult limb, will serve as an ideal model system. This system has the combined advantages of relative simplicity and genetic tractability. We will create several innovations that expand the current toolkit and thus facilitate the detailed dissection of growth and patterning. A key early step will be to develop novel reporters to dynamically and faithfully monitor signaling cascades involved in growth and patterning, such as the Dpp and Hippo pathways. We will also implement quantification techniques that are currently being set up in collaboration with an experimental physicist, to deduce, and alter, the mechanical forces that develop in the cells of a growing tissue. The large amount of quantitative data that will be generated allow us derive computational models of the individual pathways and their interaction. The focus of the study will be to answer the following questions: 1) Is the Hippo pathway regulated spatially and temporally, and by what signaling pathways? 2) Do mechanical forces play a pivotal controlling role in organ morphogenesis? 3) What are the global effects on growth, when pathways controlling patterning, cell competition or compensatory proliferation are perturbed? The proposed project will bring the approaches taken to define the mechanisms underlying and controlling growth and patterning to the next level.
Summary
Developmental biology seeks not only to learn more about the fundamental processes of growth and pattern per se, but to understand how they synergize to enable the morphogenesis of multicellular organisms. Our goal is to perform real-time analyses of these developmental processes in an intact developing organ. By applying a vital imaging approach, we can circumvent the normal limitations of inferring cellular dynamics from static images or molecular data, and obtain the real dynamic view of growth and patterning. The wing imaginal disc of Drosophila, which starts out as a simple epithelial structure and gives rise to a precisely structured adult limb, will serve as an ideal model system. This system has the combined advantages of relative simplicity and genetic tractability. We will create several innovations that expand the current toolkit and thus facilitate the detailed dissection of growth and patterning. A key early step will be to develop novel reporters to dynamically and faithfully monitor signaling cascades involved in growth and patterning, such as the Dpp and Hippo pathways. We will also implement quantification techniques that are currently being set up in collaboration with an experimental physicist, to deduce, and alter, the mechanical forces that develop in the cells of a growing tissue. The large amount of quantitative data that will be generated allow us derive computational models of the individual pathways and their interaction. The focus of the study will be to answer the following questions: 1) Is the Hippo pathway regulated spatially and temporally, and by what signaling pathways? 2) Do mechanical forces play a pivotal controlling role in organ morphogenesis? 3) What are the global effects on growth, when pathways controlling patterning, cell competition or compensatory proliferation are perturbed? The proposed project will bring the approaches taken to define the mechanisms underlying and controlling growth and patterning to the next level.
Max ERC Funding
2 310 000 €
Duration
Start date: 2009-02-01, End date: 2014-01-31
Project acronym EQUIARITH
Project Equidistribution in number theory
Researcher (PI) Philippe Michel
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary The purpose of this proposal is to investigate from various perspectives some equidistribution problems associated with homogeneous spaces of arithmetic type: a typical problem (basically solved) is the distribution of the set of representations of a large integer by an integral quadratic form. Another harder problem is the study of the distribution of special points on Shimura varieties. In a different direction (linked with quantum chaos), the study of the concentration of Laplacian (Maass) eigenforms or of sections of holomorphic bundles is related to similar problems. Given X such a space and G>L the underlying algebraic group and its corresponding lattice L, the above questions boil down to studying the distribution of H-orbits x.H (or more generally H-invariant measures)on the quotient L\G for some subgroups H. This question may be studied different methods: Harmonic Analysis (HA): given a function f on L\G one studies the period integral of f along x.H. This may be done by automorphic methods. In favorable circumstances, the above periods are related to L-functions which one may hope to treat by methods from analytic number theory (the subconvexity problem). Ergodic Theory (ET): one studies the properties of weak*-limits of the measures supported by x.H using rigidity techniques: depending on the nature of H, one might use either rigidity of unipotent actions or the more recent rigidity results for torus actions in rank >1. In fact, HA and ET are intertwined and complementary : the use of ET in this context require a substantial input from number theory and HA, while ET lead to a soft understanding of several features of HA. In addition, the Langlands correspondence principle make it possible to pass from one group G to another. Based on earlier experience, our goal is to develop these interactions systematically and to develop new approaches to outstanding arithmetic problems :eg. the subconvexity problem or the Andre/Oort conjecture.
Summary
The purpose of this proposal is to investigate from various perspectives some equidistribution problems associated with homogeneous spaces of arithmetic type: a typical problem (basically solved) is the distribution of the set of representations of a large integer by an integral quadratic form. Another harder problem is the study of the distribution of special points on Shimura varieties. In a different direction (linked with quantum chaos), the study of the concentration of Laplacian (Maass) eigenforms or of sections of holomorphic bundles is related to similar problems. Given X such a space and G>L the underlying algebraic group and its corresponding lattice L, the above questions boil down to studying the distribution of H-orbits x.H (or more generally H-invariant measures)on the quotient L\G for some subgroups H. This question may be studied different methods: Harmonic Analysis (HA): given a function f on L\G one studies the period integral of f along x.H. This may be done by automorphic methods. In favorable circumstances, the above periods are related to L-functions which one may hope to treat by methods from analytic number theory (the subconvexity problem). Ergodic Theory (ET): one studies the properties of weak*-limits of the measures supported by x.H using rigidity techniques: depending on the nature of H, one might use either rigidity of unipotent actions or the more recent rigidity results for torus actions in rank >1. In fact, HA and ET are intertwined and complementary : the use of ET in this context require a substantial input from number theory and HA, while ET lead to a soft understanding of several features of HA. In addition, the Langlands correspondence principle make it possible to pass from one group G to another. Based on earlier experience, our goal is to develop these interactions systematically and to develop new approaches to outstanding arithmetic problems :eg. the subconvexity problem or the Andre/Oort conjecture.
Max ERC Funding
866 000 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym FMWK 1870-2008
Project The surfaces of cement and reinforced concrete. A history of the formworks and processing of the surface, 1870-2008
Researcher (PI) Roberto Gargiani
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Advanced Grant (AdG), SH5, ERC-2008-AdG
Summary Since the nineteenth century, the reinforced concrete has been generating a vast specialized litterature everywhere in the world. However, none of it has ever tried to make a first assessment of the evolution of one of the most fundamental element in the processing of the reinforced concrete: the formwork; nor have been reconstructed the various ways of processing the surfaces after removal of the formwork in order to get special effects of polished or rustic surface. Therefore, on the subject of manufacturing of the formworks and processing of the surface, there is a true gap in the studies on reinforced concrete that the research The surfaces of cement and reinforced concrete. A history of the formworks and processing of the surface, 1870-2008 intends to fill. Whether historical or operationnal, this gap lacks not only of the context of the evolution from the nineteenth century, but also of a comprehensive outline of the recent production. The purpose of the research is to provide the most comprehensive documentation and the most significant examples of the international architectural production on the subject of formworks and concrete surfaces within the time span considered. Drawing up the outline of the various types of building and processing of the surfaces will be extraordinarily useful for the historiography of architecture, which will hence have a scientific instrument to evaluate the works in terms of connections between form and material in relation to concrete, as well as for the modern formworks in which the technicial and artistical issues of reinforced concrete processing at sight still remain fundamental. The results of the research will be collected in a book with the caracteristics of an essay, consisting of an important written part and an extremely rich iconographic documentation (project drawings, photographs of building sites and tools, etc.); it will be structured as a synthesis between the technical manual and the historical critical essay.
Summary
Since the nineteenth century, the reinforced concrete has been generating a vast specialized litterature everywhere in the world. However, none of it has ever tried to make a first assessment of the evolution of one of the most fundamental element in the processing of the reinforced concrete: the formwork; nor have been reconstructed the various ways of processing the surfaces after removal of the formwork in order to get special effects of polished or rustic surface. Therefore, on the subject of manufacturing of the formworks and processing of the surface, there is a true gap in the studies on reinforced concrete that the research The surfaces of cement and reinforced concrete. A history of the formworks and processing of the surface, 1870-2008 intends to fill. Whether historical or operationnal, this gap lacks not only of the context of the evolution from the nineteenth century, but also of a comprehensive outline of the recent production. The purpose of the research is to provide the most comprehensive documentation and the most significant examples of the international architectural production on the subject of formworks and concrete surfaces within the time span considered. Drawing up the outline of the various types of building and processing of the surfaces will be extraordinarily useful for the historiography of architecture, which will hence have a scientific instrument to evaluate the works in terms of connections between form and material in relation to concrete, as well as for the modern formworks in which the technicial and artistical issues of reinforced concrete processing at sight still remain fundamental. The results of the research will be collected in a book with the caracteristics of an essay, consisting of an important written part and an extremely rich iconographic documentation (project drawings, photographs of building sites and tools, etc.); it will be structured as a synthesis between the technical manual and the historical critical essay.
Max ERC Funding
660 000 €
Duration
Start date: 2009-03-01, End date: 2015-02-28
Project acronym HIGHZ
Project HIGHZ: Elucidating galaxy formation and evolution from very deep Near-IR imaging
Researcher (PI) Marijn Franx
Host Institution (HI) UNIVERSITEIT LEIDEN
Country Netherlands
Call Details Advanced Grant (AdG), PE9, ERC-2008-AdG
Summary "Studies of high redshift galaxies require very deep Near-IR imaging. This allows the study of z=2-4 galaxies redward of the Balmer/4000 Angstrom break, and the detection of UV-bright galaxies at z>7. Two new facilities wil revolutionize these studies: the VISTA telescope built for ESO, and the Near-IR channel on WF3 for HST. They will become available at the start of the grant period. We propose to build a group to analyze the imaging data from these facilities. We will make use of the fact that I am Co-PI on the ultra-deep ""ULTRA-VISTA"" survey on the VISTA telescope, and we will analyze public and privately proposed data from WF3. The following science questions will be addressed: (1) what is the origin and evolution of the Hubble sequence out to z=3, (2) what is the evolution of the Luminosity Function of UV bright galaxies between z=6 to z=11, and what galaxies cause re-ionization, (3) how does the mass function of quiescent and star forming galaxies evolve to z=4, and how do the correlation functions of subpopulations evolve as a function of redshift. A crucial component of this proposal is the request for support for a junior faculty position. This person will take on the lead for the highly specialized data processing, and will supervise the analysis of the selection effects, and other crucial components needed for a proper analysis."
Summary
"Studies of high redshift galaxies require very deep Near-IR imaging. This allows the study of z=2-4 galaxies redward of the Balmer/4000 Angstrom break, and the detection of UV-bright galaxies at z>7. Two new facilities wil revolutionize these studies: the VISTA telescope built for ESO, and the Near-IR channel on WF3 for HST. They will become available at the start of the grant period. We propose to build a group to analyze the imaging data from these facilities. We will make use of the fact that I am Co-PI on the ultra-deep ""ULTRA-VISTA"" survey on the VISTA telescope, and we will analyze public and privately proposed data from WF3. The following science questions will be addressed: (1) what is the origin and evolution of the Hubble sequence out to z=3, (2) what is the evolution of the Luminosity Function of UV bright galaxies between z=6 to z=11, and what galaxies cause re-ionization, (3) how does the mass function of quiescent and star forming galaxies evolve to z=4, and how do the correlation functions of subpopulations evolve as a function of redshift. A crucial component of this proposal is the request for support for a junior faculty position. This person will take on the lead for the highly specialized data processing, and will supervise the analysis of the selection effects, and other crucial components needed for a proper analysis."
Max ERC Funding
1 471 200 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym MATHCARD
Project Mathematical Modelling and Simulation of the Cardiovascular System
Researcher (PI) Alfio Quarteroni
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary This research project aims at the development, analysis and computer implementation of mathematical models of the cardiovascular system. Our goal is to describe and simulate the anatomic structure and the physiological response of the human cardiovascular system in healthy or diseased states. This demands to address many fundamental issues. Blood flow interacts both mechanically and chemically with the vessel walls and tissue, giving rise to complex fluid-structure interaction problems. The mathematical analysis of these problems is complicated and the related numerical analysis difficult. We propose to extend the recently achieved results on blood flow simulations by directing our analysis in several new directions. Our goal is to encompass aspects of metabolic regulation, micro-circulation, the electrical and mechanical activity of the heart, and their interactions. Modelling and optimisation of drugs delivery in clinical diseases will be addressed as well. This requires the understanding of transport, diffusion and reaction processes within the blood and organs of the body. The emphasis of this project will be put on mathematical modelling, numerical analysis, algorithm implementation, computational efficiency, validation and verification. Our purpose is to set up a mathematical simulation platform eventually leading to the improvement of vascular diseases diagnosis, setting up of surgical planning, and cure of inflammatory processes in the circulatory system. This platform might also help physicians to construct and evaluate combined anatomic/physiological models to predict the outcome of alternative treatment plans for individual patients.
Summary
This research project aims at the development, analysis and computer implementation of mathematical models of the cardiovascular system. Our goal is to describe and simulate the anatomic structure and the physiological response of the human cardiovascular system in healthy or diseased states. This demands to address many fundamental issues. Blood flow interacts both mechanically and chemically with the vessel walls and tissue, giving rise to complex fluid-structure interaction problems. The mathematical analysis of these problems is complicated and the related numerical analysis difficult. We propose to extend the recently achieved results on blood flow simulations by directing our analysis in several new directions. Our goal is to encompass aspects of metabolic regulation, micro-circulation, the electrical and mechanical activity of the heart, and their interactions. Modelling and optimisation of drugs delivery in clinical diseases will be addressed as well. This requires the understanding of transport, diffusion and reaction processes within the blood and organs of the body. The emphasis of this project will be put on mathematical modelling, numerical analysis, algorithm implementation, computational efficiency, validation and verification. Our purpose is to set up a mathematical simulation platform eventually leading to the improvement of vascular diseases diagnosis, setting up of surgical planning, and cure of inflammatory processes in the circulatory system. This platform might also help physicians to construct and evaluate combined anatomic/physiological models to predict the outcome of alternative treatment plans for individual patients.
Max ERC Funding
1 810 992 €
Duration
Start date: 2009-01-01, End date: 2014-06-30
Project acronym NANOIMMUNE
Project Nanoparticle Vaccines: At the interface of bionanotechnology and adaptive immunity
Researcher (PI) Jeffrey Hubbell
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Advanced Grant (AdG), LS6, ERC-2008-AdG
Summary We have recently developed a bionanotechnology approach to vaccination (Reddy et al., Nature Biotechnology, 25, 1159-1164, 2007): degradable polymeric nanoparticles are designed that: (i) are so small that they can enter the lymphatic circulation by biophysical means; (ii) are efficiently taken up by a large fraction of dendritic cells (DCs) that are resident in the lymph node that drains the injection site; (iii) activate the complement cascade and provide a potent, yet safe, activation signal to those DCs; and (iv) thereby induce a potent, Th1 adaptive immune response to antigen bound to the nanoparticles, with the generation of both antibodies and cytotoxic T lymphocytes. In the present project, we focus on next-generation bionanotechnology vaccine platforms for vaccination. We propose three technological advances, and we propose to demonstrate those three advances in definitive models in the mouse. Specifically, we propose to (Specific Aim 1) evaluate the current approach of complement-mediated DC activation in breaking tolerance to a chronic viral infection (hepatitis B virus, HBV, targeting hepatitis B virus surface antigen, HBsAg) and to combine complement as a danger signal with other nanoparticle-borne danger signals to develop an effective bionanotechnological platform for therapeutic antiviral vaccination; (Specific Aim 2) to develop a new, ultrasmall nanoparticle implementation suitable for delivery of DNA to lymph node-resident DCs, also activating them, to enable more efficient DNA vaccination; and (Specific Aim 3) to develop an ultrasmall nanoparticle implementation suitable for delivery of DNA to DCs resident within the sublingual mucosa, also activating them, to enable efficient DNA mucosal vaccination. The Specific Aim addressing the oral mucosa will begin with HBsAg, to allow comparison to other routes of administration, and will then proceed to antigens from influenza A.
Summary
We have recently developed a bionanotechnology approach to vaccination (Reddy et al., Nature Biotechnology, 25, 1159-1164, 2007): degradable polymeric nanoparticles are designed that: (i) are so small that they can enter the lymphatic circulation by biophysical means; (ii) are efficiently taken up by a large fraction of dendritic cells (DCs) that are resident in the lymph node that drains the injection site; (iii) activate the complement cascade and provide a potent, yet safe, activation signal to those DCs; and (iv) thereby induce a potent, Th1 adaptive immune response to antigen bound to the nanoparticles, with the generation of both antibodies and cytotoxic T lymphocytes. In the present project, we focus on next-generation bionanotechnology vaccine platforms for vaccination. We propose three technological advances, and we propose to demonstrate those three advances in definitive models in the mouse. Specifically, we propose to (Specific Aim 1) evaluate the current approach of complement-mediated DC activation in breaking tolerance to a chronic viral infection (hepatitis B virus, HBV, targeting hepatitis B virus surface antigen, HBsAg) and to combine complement as a danger signal with other nanoparticle-borne danger signals to develop an effective bionanotechnological platform for therapeutic antiviral vaccination; (Specific Aim 2) to develop a new, ultrasmall nanoparticle implementation suitable for delivery of DNA to lymph node-resident DCs, also activating them, to enable more efficient DNA vaccination; and (Specific Aim 3) to develop an ultrasmall nanoparticle implementation suitable for delivery of DNA to DCs resident within the sublingual mucosa, also activating them, to enable efficient DNA mucosal vaccination. The Specific Aim addressing the oral mucosa will begin with HBsAg, to allow comparison to other routes of administration, and will then proceed to antigens from influenza A.
Max ERC Funding
2 499 425 €
Duration
Start date: 2009-05-01, End date: 2014-04-30
Project acronym ORGANELL
Project Organelle homeostasis: How are membrane fission and fusion machineries coordinated to regulate size and copy number of a lysosomal compartment?
Researcher (PI) Andreas Mayer
Host Institution (HI) UNIVERSITE DE LAUSANNE
Country Switzerland
Call Details Advanced Grant (AdG), LS3, ERC-2008-AdG
Summary Yeast vacuoles (lysosomes) will serve as an excellent model system: Vacuoles change copy number and size in the cell cycle and upon shifts of media; due to their large diameter (up to 5 µm) these changes can be assayed by fluorescence microscopy and are amenable to genetic screening. Moreover, an in vitro system for vacuole fusion exists and we recently succeeded in reconstituting also cell-free vacuole fission with purified organelles. We will first build an experimental toolkit for vacuole fission to characterize this reaction in detail. Several approaches will be combined: (1) Identification of fission proteins by mutant screening, as well as by candidate approaches, and their localization relative to the fission site; (2) further developing a system reconstituting in vitro fission and efficient methods to quantitate it. (3) creating organelle chips to synchronously study fission on multiple single vacuoles immobilized in a defined orientation. (4) time-resolved confocal microscopy of fission proteins in vivo and in vitro; (5) biochemical characterization of fission protein associations and their changes during fission. These approaches will identify the vacuolar fission apparatus and help to elucidate its functioning. In a second step we will explore how the fission apparatus physically and functionally interacts with the already well-defined vacuolar membrane fusion machinery. We will characterize the impact of cell cycle regulators and signaling pathways on these interactions. These studies will be pioneering in that they will lead us to a comprehensive description of an organelle fission process and of how membrane fission and fusion components are coordinated to control size and copy number of an organelle.
Summary
Yeast vacuoles (lysosomes) will serve as an excellent model system: Vacuoles change copy number and size in the cell cycle and upon shifts of media; due to their large diameter (up to 5 µm) these changes can be assayed by fluorescence microscopy and are amenable to genetic screening. Moreover, an in vitro system for vacuole fusion exists and we recently succeeded in reconstituting also cell-free vacuole fission with purified organelles. We will first build an experimental toolkit for vacuole fission to characterize this reaction in detail. Several approaches will be combined: (1) Identification of fission proteins by mutant screening, as well as by candidate approaches, and their localization relative to the fission site; (2) further developing a system reconstituting in vitro fission and efficient methods to quantitate it. (3) creating organelle chips to synchronously study fission on multiple single vacuoles immobilized in a defined orientation. (4) time-resolved confocal microscopy of fission proteins in vivo and in vitro; (5) biochemical characterization of fission protein associations and their changes during fission. These approaches will identify the vacuolar fission apparatus and help to elucidate its functioning. In a second step we will explore how the fission apparatus physically and functionally interacts with the already well-defined vacuolar membrane fusion machinery. We will characterize the impact of cell cycle regulators and signaling pathways on these interactions. These studies will be pioneering in that they will lead us to a comprehensive description of an organelle fission process and of how membrane fission and fusion components are coordinated to control size and copy number of an organelle.
Max ERC Funding
2 310 000 €
Duration
Start date: 2009-09-01, End date: 2015-08-31
Project acronym PROPEREMO
Project Production and perception of emotion: An affective sciences approach
Researcher (PI) Klaus Scherer
Host Institution (HI) UNIVERSITE DE GENEVE
Country Switzerland
Call Details Advanced Grant (AdG), SH4, ERC-2008-AdG
Summary Emotion is a prime example of the complexity of human mind and behaviour, a psychobiological mechanism shaped by language and culture, which has puzzled scholars in the humanities and social sciences over the centuries. In an effort to reconcile conflicting theoretical traditions, we advocate a componential approach which treats event appraisal, motivational shifts, physiological responses, motor expression, and subjective feeling as dynamically interrelated and integrated components during emotion episodes. Using a prediction-generating theoretical model, we will address both production (elicitation and reaction patterns) and perception (observer inference of emotion from expressive cues). Key issues are the cognitive architecture and mental chronometry of appraisal, neurophysiological structures of relevance and valence detection, the emergence of conscious feelings due to the synchronization of brain/body systems, the generating mechanism for motor expression, the dimensionality of affective space, and the role of embodiment and empathy in perceiving and interpreting emotional expressions. Using multiple paradigms in laboratory, game, simulation, virtual reality, and field settings, we will critically test theory-driven hypotheses by examining brain structures and circuits (via neuroimagery), behaviour (via monitoring decisions and actions), psychophysiological responses (via electrographic recording), facial, vocal, and bodily expressions (via micro-coding and image processing), and conscious feeling (via advanced self-report procedures). In this endeavour, we benefit from extensive research experience, access to outstanding infrastructure, advanced analysis and synthesis methods, validated experimental paradigms as well as, most importantly, from the joint competence of an interdisciplinary affective science group involving philosophers, linguists, psychologists, neuroscientists, behavioural economists, anthropologists, and computer scientists.
Summary
Emotion is a prime example of the complexity of human mind and behaviour, a psychobiological mechanism shaped by language and culture, which has puzzled scholars in the humanities and social sciences over the centuries. In an effort to reconcile conflicting theoretical traditions, we advocate a componential approach which treats event appraisal, motivational shifts, physiological responses, motor expression, and subjective feeling as dynamically interrelated and integrated components during emotion episodes. Using a prediction-generating theoretical model, we will address both production (elicitation and reaction patterns) and perception (observer inference of emotion from expressive cues). Key issues are the cognitive architecture and mental chronometry of appraisal, neurophysiological structures of relevance and valence detection, the emergence of conscious feelings due to the synchronization of brain/body systems, the generating mechanism for motor expression, the dimensionality of affective space, and the role of embodiment and empathy in perceiving and interpreting emotional expressions. Using multiple paradigms in laboratory, game, simulation, virtual reality, and field settings, we will critically test theory-driven hypotheses by examining brain structures and circuits (via neuroimagery), behaviour (via monitoring decisions and actions), psychophysiological responses (via electrographic recording), facial, vocal, and bodily expressions (via micro-coding and image processing), and conscious feeling (via advanced self-report procedures). In this endeavour, we benefit from extensive research experience, access to outstanding infrastructure, advanced analysis and synthesis methods, validated experimental paradigms as well as, most importantly, from the joint competence of an interdisciplinary affective science group involving philosophers, linguists, psychologists, neuroscientists, behavioural economists, anthropologists, and computer scientists.
Max ERC Funding
2 371 331 €
Duration
Start date: 2009-03-01, End date: 2015-02-28
Project acronym PROTEOMICS V3.0
Project Proteomics v3.0: Development, Implementation and Dissemination of a Third Generation Proteomics Technology
Researcher (PI) Rudolf Aebersold
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Advanced Grant (AdG), LS2, ERC-2008-AdG
Summary Quantitative proteomics is a key technology for the life sciences in general and for systems biology in particular. So far, however, technical limitations have made it impossible to analyze the complete proteome of any species. It is the general goal of this proposal to develop, implement, apply and disseminate a new proteomic strategy that has the potential to generate quantitative proteomic datasets at an unprecedented depth, throughput, accuracy and robustness. Specifically, the new technology will identify and quantify every protein in a proteome. The title of the project Proteomics v3.0 was chosen to indicate the transformation of proteomics into its third phase, after 2D gel electrophoresis and LC-MS/MS based shotgun proteomics. Proteomics v3.0 is based on two sequential steps, emulating the strategy that has been immensely successful in the genomic sciences. In the first step the proteomic space is completely mapped out to generate a proteomic resource that is akin to the genomic sequence database. In the second step rapid and accurate assays will be developed to unambiguously identify and quantify any protein of the respective proteome in a multitude of samples. These assays will be made publicly accessible to support quantitative proteomic studies in the respective species. The strategy will first be implemented and tested in the yeast S. cerevisiae. In a later stage of the project it will be extended to the more complicated human proteome and include the development of assays that also probe the state of modification, splice forms and other types of protein variants generated by a specific open reading frame. Overall, the project will transform quantitative proteomics from a highly specialized technology practiced at a high level in a few laboratories worldwide into a commodity technology accessible, in principle to every group.
Summary
Quantitative proteomics is a key technology for the life sciences in general and for systems biology in particular. So far, however, technical limitations have made it impossible to analyze the complete proteome of any species. It is the general goal of this proposal to develop, implement, apply and disseminate a new proteomic strategy that has the potential to generate quantitative proteomic datasets at an unprecedented depth, throughput, accuracy and robustness. Specifically, the new technology will identify and quantify every protein in a proteome. The title of the project Proteomics v3.0 was chosen to indicate the transformation of proteomics into its third phase, after 2D gel electrophoresis and LC-MS/MS based shotgun proteomics. Proteomics v3.0 is based on two sequential steps, emulating the strategy that has been immensely successful in the genomic sciences. In the first step the proteomic space is completely mapped out to generate a proteomic resource that is akin to the genomic sequence database. In the second step rapid and accurate assays will be developed to unambiguously identify and quantify any protein of the respective proteome in a multitude of samples. These assays will be made publicly accessible to support quantitative proteomic studies in the respective species. The strategy will first be implemented and tested in the yeast S. cerevisiae. In a later stage of the project it will be extended to the more complicated human proteome and include the development of assays that also probe the state of modification, splice forms and other types of protein variants generated by a specific open reading frame. Overall, the project will transform quantitative proteomics from a highly specialized technology practiced at a high level in a few laboratories worldwide into a commodity technology accessible, in principle to every group.
Max ERC Funding
2 400 000 €
Duration
Start date: 2009-04-01, End date: 2014-03-31