Project acronym 1st-principles-discs
Project A First Principles Approach to Accretion Discs
Researcher (PI) Martin Elias Pessah
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Summary
Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Max ERC Funding
1 793 697 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym ALLQUANTUM
Project All-solid-state quantum electrodynamics in photonic crystals
Researcher (PI) Peter Lodahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary In quantum electrodynamics a range of fundamental processes are driven by omnipresent vacuum fluctuations. Photonic crystals can control vacuum fluctuations and thereby the fundamental interaction between light and matter. We will conduct experiments on quantum dots in photonic crystals and observe novel quantum electrodynamics effects including fractional decay and the modified Lamb shift. Furthermore, photonic crystals will be explored for shielding sensitive quantum-superposition states against decoherence.
Defects in photonic crystals allow novel functionalities enabling nanocavities and waveguides. We will use the tight confinement of light in a nanocavity to entangle a quantum dot and a photon, and explore the scalability. Controlled ways of generating scalable and robust quantum entanglement is the essential missing link limiting quantum communication and quantum computing. A single quantum dot coupled to a slowly propagating mode in a photonic crystal waveguide will be used to induce large nonlinearities at the few-photon level.
Finally we will explore a novel route to enhanced light-matter interaction employing controlled disorder in photonic crystals. In disordered media multiple scattering of light takes place and can lead to the formation of Anderson-localized modes. We will explore cavity quantum electrodynamics in Anderson-localized random cavities considering disorder a resource and not a nuisance, which is the traditional view.
The main focus of the project will be on optical experiments, but fabrication of photonic crystals and detailed theory will be carried out as well. Several of the proposed experiments will constitute milestones in quantum optics and may pave the way for all-solid-state quantum communication with quantum dots in photonic crystals.
Summary
In quantum electrodynamics a range of fundamental processes are driven by omnipresent vacuum fluctuations. Photonic crystals can control vacuum fluctuations and thereby the fundamental interaction between light and matter. We will conduct experiments on quantum dots in photonic crystals and observe novel quantum electrodynamics effects including fractional decay and the modified Lamb shift. Furthermore, photonic crystals will be explored for shielding sensitive quantum-superposition states against decoherence.
Defects in photonic crystals allow novel functionalities enabling nanocavities and waveguides. We will use the tight confinement of light in a nanocavity to entangle a quantum dot and a photon, and explore the scalability. Controlled ways of generating scalable and robust quantum entanglement is the essential missing link limiting quantum communication and quantum computing. A single quantum dot coupled to a slowly propagating mode in a photonic crystal waveguide will be used to induce large nonlinearities at the few-photon level.
Finally we will explore a novel route to enhanced light-matter interaction employing controlled disorder in photonic crystals. In disordered media multiple scattering of light takes place and can lead to the formation of Anderson-localized modes. We will explore cavity quantum electrodynamics in Anderson-localized random cavities considering disorder a resource and not a nuisance, which is the traditional view.
The main focus of the project will be on optical experiments, but fabrication of photonic crystals and detailed theory will be carried out as well. Several of the proposed experiments will constitute milestones in quantum optics and may pave the way for all-solid-state quantum communication with quantum dots in photonic crystals.
Max ERC Funding
1 199 648 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CHEMHEAT
Project Chemical Control of Heating and Cooling in Molecular Junctions: Optimizing Function and Stability
Researcher (PI) Gemma Solomon
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Summary
Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Max ERC Funding
1 499 999 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym LOBENA
Project Long Beamtime Experiments for Nuclear Astrophysics
Researcher (PI) Hans Otto Uldall Fynbo
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary The goal of LOBENA is to measure key properties needed for understanding nuclear processes in the Cosmos. Nuclear Astrophysics plays a key role in our quest to understand the origin and distribution of the chemical elements in our galaxy. Nuclear processes are crucial for understanding the energy production in the universe and are essential for describing the creation of chemical elements from the ashes of the Big Bang. Uncertainties in the nuclear physics can therefore influence our understanding of many astrophysical processes, both those involving stable stellar burning phases and explosive phenomena such as X-ray bursts, gamma-ray bursts and supernovae.
In LOBENA (LOng Beamtime Experiments for Nuclear Astrophysics) I will initiate a series of studies in Nuclear Astrophysics, which have in common the need for long beam times and the use of complete kinematics detection of several particles emitted in reactions. The core of the project will focus on the systems 8Be, 12C and 16O where today key open questions of great importance remain to answered. These questions can be addressed by reactions induced by low energy (<5MeV) beams of protons and 3He on light targets such as 6,7Li, 9Be, 10,11B and 19F using a newly developed complete kinematics detection procedure. The department of Physics and Astronomy in Aarhus provides a unique scene for doing these measurements since it provides accelerators where long beam time can be guarantied. LOBENA will also include complimentary experiments at international user facilities such as ISOLDE (CERN), KVI (Groningen), JYFL and (Jyväskylä).
With this ERC starting grant proposal I wish to start up my own group around Nuclear Astrophysics experiments in house and at international user facilities. With two Post Doc.s and a Ph.D. I will be much better able to fully exploit the scientific potential of the proposed research, which will also help to consolidate my own research career and give me more independence.
Summary
The goal of LOBENA is to measure key properties needed for understanding nuclear processes in the Cosmos. Nuclear Astrophysics plays a key role in our quest to understand the origin and distribution of the chemical elements in our galaxy. Nuclear processes are crucial for understanding the energy production in the universe and are essential for describing the creation of chemical elements from the ashes of the Big Bang. Uncertainties in the nuclear physics can therefore influence our understanding of many astrophysical processes, both those involving stable stellar burning phases and explosive phenomena such as X-ray bursts, gamma-ray bursts and supernovae.
In LOBENA (LOng Beamtime Experiments for Nuclear Astrophysics) I will initiate a series of studies in Nuclear Astrophysics, which have in common the need for long beam times and the use of complete kinematics detection of several particles emitted in reactions. The core of the project will focus on the systems 8Be, 12C and 16O where today key open questions of great importance remain to answered. These questions can be addressed by reactions induced by low energy (<5MeV) beams of protons and 3He on light targets such as 6,7Li, 9Be, 10,11B and 19F using a newly developed complete kinematics detection procedure. The department of Physics and Astronomy in Aarhus provides a unique scene for doing these measurements since it provides accelerators where long beam time can be guarantied. LOBENA will also include complimentary experiments at international user facilities such as ISOLDE (CERN), KVI (Groningen), JYFL and (Jyväskylä).
With this ERC starting grant proposal I wish to start up my own group around Nuclear Astrophysics experiments in house and at international user facilities. With two Post Doc.s and a Ph.D. I will be much better able to fully exploit the scientific potential of the proposed research, which will also help to consolidate my own research career and give me more independence.
Max ERC Funding
1 476 075 €
Duration
Start date: 2012-11-01, End date: 2018-10-31
Project acronym MOS
Project Manifestations of Solitude: Withdrawal and Engagement in the long seventeenth-century
Researcher (PI) Mette Birkedal Bruun
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), SH5, ERC-2012-StG_20111124
Summary The objective of Manifestations of Solitude: Withdrawal and Engagement in the long seventeenth-century is to demonstrate how the creation of zones of unworldliness within the world structures re-ligious practice. We will examine withdrawal in its historical settings and uncover the facetted na-ture of this phenomenon in the seventeenth-century religious culture, thus offering insights and tools for a better understanding of the representation of religious experience in European culture.
Working across cultural and confessional boundaries, the project explores appropriations of the appeal that the Christian be in the world but not of the world: in texts, architecture, images and mu-sic, and it examines the ways in which these media are employed to prompt and sustain with¬drawal from the world. The project focuses on ten institutional social units (e.g. the abbey, the Konventikel, the household), which manifest solitude in different ways. It examines such units through ten exem-plary places (e.g. Herrnhut, Saint-Cyr) and their cultural and reli¬gious life, drawing on materials such as architectural plans, interior decoration, treatises on theology and aesthetics, letters, diaries, epitaphs, emblems, portraits, devotional images, sermons and musical pieces.
The backbone of the project is an innovative strategy for interdisciplinary analysis which traces the generation of a symbolically charged space around religious withdrawals. With this analytical tool we will examine how symbols of ‘world’, ‘solitude’ and the demarcation between them are materialized in forms ranging from material culture (architecture, furnishing), via artistic, perfor-mative expressions (devotional images, musical pieces) to literary topoi and metaphors and the in-fluence on such forms of contemporary aesthetic sensibilities. The project examines the cultivation of the religious self: shaping a sym¬bolically charged space – and shaped in turn by this space.
Summary
The objective of Manifestations of Solitude: Withdrawal and Engagement in the long seventeenth-century is to demonstrate how the creation of zones of unworldliness within the world structures re-ligious practice. We will examine withdrawal in its historical settings and uncover the facetted na-ture of this phenomenon in the seventeenth-century religious culture, thus offering insights and tools for a better understanding of the representation of religious experience in European culture.
Working across cultural and confessional boundaries, the project explores appropriations of the appeal that the Christian be in the world but not of the world: in texts, architecture, images and mu-sic, and it examines the ways in which these media are employed to prompt and sustain with¬drawal from the world. The project focuses on ten institutional social units (e.g. the abbey, the Konventikel, the household), which manifest solitude in different ways. It examines such units through ten exem-plary places (e.g. Herrnhut, Saint-Cyr) and their cultural and reli¬gious life, drawing on materials such as architectural plans, interior decoration, treatises on theology and aesthetics, letters, diaries, epitaphs, emblems, portraits, devotional images, sermons and musical pieces.
The backbone of the project is an innovative strategy for interdisciplinary analysis which traces the generation of a symbolically charged space around religious withdrawals. With this analytical tool we will examine how symbols of ‘world’, ‘solitude’ and the demarcation between them are materialized in forms ranging from material culture (architecture, furnishing), via artistic, perfor-mative expressions (devotional images, musical pieces) to literary topoi and metaphors and the in-fluence on such forms of contemporary aesthetic sensibilities. The project examines the cultivation of the religious self: shaping a sym¬bolically charged space – and shaped in turn by this space.
Max ERC Funding
1 250 000 €
Duration
Start date: 2013-02-01, End date: 2017-03-31
Project acronym QIOS
Project Quantum Interfaces and Open Systems
Researcher (PI) Anders Soerensen
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary "Researchers have strived to obtain control of a variety of different quantum systems, each characterized by their own distinct advantages: quantum optical systems offer excellent isolation from the environment while solid state systems allow for integrated micro-fabricated devices. At the same time nuclear spins in molecules can remain decoupled from the environment even under rather harsh conditions, and this is the basis of NMR experiments. Given these distinct advantages it is very fruitful to investigate hybrid devices merging the advantages of each of the systems. To do this it is essential to develop quantum interfaces to connect the different systems. By their very nature such quantum interfaces exchange information with their environment and are therefore open quantum systems.
In this project I wish to establish a strong theoretical quantum optics group which can guide and inspire the experiments towards breaking new grounds for open quantum systems and making quantum interfaces between distinct physical systems. The objective is to develop concrete proposals for how to experimentally control and exploit the interaction of quantum systems with their surroundings and for how this can be used for quantum interfaces.
The work in this project is particularly relevant for applications in quantum information processing, where the current challenge is to take the field from proof-of-principle demonstrations to truly scalable devices. Such challenge demands new interdisciplinary theoretical ideas for hybrid devices. This proposal addresses several key challenges for quantum information processing: scalable multimode quantum repeaters based on hybrid approaches, entanglement enabled quantum metrology, photonic engineering based on surface plasmons, dissipative preparation of entangled states, and phonon engineering for quantum dots. In addition applications towards nuclear spin cooling to improve NMR experiments as well as ultra cold atoms will be explored."
Summary
"Researchers have strived to obtain control of a variety of different quantum systems, each characterized by their own distinct advantages: quantum optical systems offer excellent isolation from the environment while solid state systems allow for integrated micro-fabricated devices. At the same time nuclear spins in molecules can remain decoupled from the environment even under rather harsh conditions, and this is the basis of NMR experiments. Given these distinct advantages it is very fruitful to investigate hybrid devices merging the advantages of each of the systems. To do this it is essential to develop quantum interfaces to connect the different systems. By their very nature such quantum interfaces exchange information with their environment and are therefore open quantum systems.
In this project I wish to establish a strong theoretical quantum optics group which can guide and inspire the experiments towards breaking new grounds for open quantum systems and making quantum interfaces between distinct physical systems. The objective is to develop concrete proposals for how to experimentally control and exploit the interaction of quantum systems with their surroundings and for how this can be used for quantum interfaces.
The work in this project is particularly relevant for applications in quantum information processing, where the current challenge is to take the field from proof-of-principle demonstrations to truly scalable devices. Such challenge demands new interdisciplinary theoretical ideas for hybrid devices. This proposal addresses several key challenges for quantum information processing: scalable multimode quantum repeaters based on hybrid approaches, entanglement enabled quantum metrology, photonic engineering based on surface plasmons, dissipative preparation of entangled states, and phonon engineering for quantum dots. In addition applications towards nuclear spin cooling to improve NMR experiments as well as ultra cold atoms will be explored."
Max ERC Funding
1 431 542 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym STC
Project Synaptic Tagging and Capture: From Synapses to Behavior
Researcher (PI) Sayyed Mohammad Sadegh Nabavi
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), LS5, ERC-2015-STG
Summary It is shown that long-term potentiation (LTP) is the cellular basis of memory formation. However, since all but small fraction of memories are forgotten, LTP has been further divided into early LTP (e-LTP), the mechanism by which short-term memories are formed, and a more stable late LTP (L-LTP), by which long-term memories are formed. Remarkably, it has been shown that an e-LTP can be stabilized if it is preceded or followed by heterosynaptic L-LTP.
According to Synaptic Tagging and Capture (STC) hypothesis, e-LTP is stabilized by capturing proteins that are made by L-LTP induction. The model proposes that this mechanism underlies the formation of late associative memory, where the stability of a memory is not only defined by the stimuli that induce the change but also by events happening before and after these stimuli. As such, the model explicitly predicts that a short-term memory can be stabilized by inducing heterosynaptic L-LTP.
In this grant, I will put this hypothesis into test. Specifically, I will test two explicit predictions of STC model: 1) A naturally formed short-term memory can be stabilized by induction of heterosynaptic L-LTP. 2) This stabilization is caused by the protein synthesis feature of L-LTP. To do this, using optogenetics, I will engineer a short-term memory in auditory fear circuit, in which an animal transiently associates a foot shock to a tone. Subsequently, I will examine if optogenetic delivery of L-LTP to the visual inputs converging on the same population of neurons in the amygdala will stabilize the short-term tone fear memory.
To be able to engineer natural memory by manipulating synaptic plasticity I will develop two systems: 1) A two-color optical activation system which permits selective manipulation of distinct neuronal populations with precise temporal and spatial resolution; 2) An inducible and activity-dependent expression system by which those neurons that are activated by a natural stimulus will be optically tagged.
Summary
It is shown that long-term potentiation (LTP) is the cellular basis of memory formation. However, since all but small fraction of memories are forgotten, LTP has been further divided into early LTP (e-LTP), the mechanism by which short-term memories are formed, and a more stable late LTP (L-LTP), by which long-term memories are formed. Remarkably, it has been shown that an e-LTP can be stabilized if it is preceded or followed by heterosynaptic L-LTP.
According to Synaptic Tagging and Capture (STC) hypothesis, e-LTP is stabilized by capturing proteins that are made by L-LTP induction. The model proposes that this mechanism underlies the formation of late associative memory, where the stability of a memory is not only defined by the stimuli that induce the change but also by events happening before and after these stimuli. As such, the model explicitly predicts that a short-term memory can be stabilized by inducing heterosynaptic L-LTP.
In this grant, I will put this hypothesis into test. Specifically, I will test two explicit predictions of STC model: 1) A naturally formed short-term memory can be stabilized by induction of heterosynaptic L-LTP. 2) This stabilization is caused by the protein synthesis feature of L-LTP. To do this, using optogenetics, I will engineer a short-term memory in auditory fear circuit, in which an animal transiently associates a foot shock to a tone. Subsequently, I will examine if optogenetic delivery of L-LTP to the visual inputs converging on the same population of neurons in the amygdala will stabilize the short-term tone fear memory.
To be able to engineer natural memory by manipulating synaptic plasticity I will develop two systems: 1) A two-color optical activation system which permits selective manipulation of distinct neuronal populations with precise temporal and spatial resolution; 2) An inducible and activity-dependent expression system by which those neurons that are activated by a natural stimulus will be optically tagged.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-04-01, End date: 2022-03-31
Project acronym SWEETOOLS
Project Smart Biologics: Developing New Tools in Glycobiology
Researcher (PI) Milan Vrabel
Host Institution (HI) USTAV ORGANICKE CHEMIE A BIOCHEMIE, AV CR, V.V.I.
Country Czechia
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Glycans are ubiquitous biomolecules found throughout all kingdoms of life. Early studies contributed considerably to our appreciation of glycan functions by showing that abnormalities in the glycosylation can develop into pathogenesis and severe dysfunctions. Despite the crucial role of sugars in many biological events we still do not have adequate tools to decipher their complexity. To unveil the mysteries in the rapidly emerging field of glycobiology we aim in this proposal to develop new tools that will help us to study and understand these important biomolecules. To realize this, we plan to combine the unique targeting capability of biologics with the inhibitory effect of small molecules into robust constructs with advanced properties. The biological part of the construct will be evolved using synthetic peptide libraries ensuring high selectivity toward particular sugar processing enzymes. The second part of the construct will consist of small molecular inhibitor warhead that will be designed and synthesized based on crystal structure-aided analyses. To merge these two moieties we aim to develop a new target enzyme–templated fluorogenic in situ click chemistry methodology that will enable us to easily monitor and screen whole peptide–small molecule bioconjugate libraries as highly selective inhibitors and manipulators of sugar processing enzymes. In addition, we aim to create new multivalent heteroglycosystems by using bioorthogonal reactions on peptide library scaffold. These structures will enable us to study polyvalent carbohydrate–protein interactions and to generate novel therapeutics such as influenza virus entry blockers. Our goal is to develop a new class of smart bioconjugate probes that will help us to answer fundamental questions in glycobiology. The outcomes of this project will significantly deepen our knowledge of glycoconjugates and in the long term, will allow for the design of efficient vaccines and for the development of selective therapeutics.
Summary
Glycans are ubiquitous biomolecules found throughout all kingdoms of life. Early studies contributed considerably to our appreciation of glycan functions by showing that abnormalities in the glycosylation can develop into pathogenesis and severe dysfunctions. Despite the crucial role of sugars in many biological events we still do not have adequate tools to decipher their complexity. To unveil the mysteries in the rapidly emerging field of glycobiology we aim in this proposal to develop new tools that will help us to study and understand these important biomolecules. To realize this, we plan to combine the unique targeting capability of biologics with the inhibitory effect of small molecules into robust constructs with advanced properties. The biological part of the construct will be evolved using synthetic peptide libraries ensuring high selectivity toward particular sugar processing enzymes. The second part of the construct will consist of small molecular inhibitor warhead that will be designed and synthesized based on crystal structure-aided analyses. To merge these two moieties we aim to develop a new target enzyme–templated fluorogenic in situ click chemistry methodology that will enable us to easily monitor and screen whole peptide–small molecule bioconjugate libraries as highly selective inhibitors and manipulators of sugar processing enzymes. In addition, we aim to create new multivalent heteroglycosystems by using bioorthogonal reactions on peptide library scaffold. These structures will enable us to study polyvalent carbohydrate–protein interactions and to generate novel therapeutics such as influenza virus entry blockers. Our goal is to develop a new class of smart bioconjugate probes that will help us to answer fundamental questions in glycobiology. The outcomes of this project will significantly deepen our knowledge of glycoconjugates and in the long term, will allow for the design of efficient vaccines and for the development of selective therapeutics.
Max ERC Funding
1 405 625 €
Duration
Start date: 2016-02-01, End date: 2021-07-31
Project acronym TopDyn
Project Probing topology and dynamics in driven quantum many-body systems
Researcher (PI) Mark Rudner
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE3, ERC-2015-STG
Summary If the twentieth century was about discovering the basic laws of quantum mechanics, then the twenty first century will be about pushing them to new frontiers and learning how to control them. Condensed matter systems are predicted to host many intriguing and potentially useful quantum phenomena, though materials where they can be realized are rare. This motivates me to seek alternative routes for their realization, and to find new means for controlling quantum many-body systems.
In this project I aim to provide a deeper and broader theoretical understanding of quantum dynamics in driven many-body systems, and to expose new routes for experimental investigation. As a major research theme, my team will investigate possibilities for using time-dependent fields to realize topological phenomena through strong driving. The theoretical description and realization of such phenomena is a multifaceted problem that will serve as a vehicle for elucidating many general aspects of driven quantum dynamics that are relevant on an even broader scale.
To achieve my broad goals I propose an ambitious work plan, organized into three interrelated work packages focused on: 1) characterizing, 2) realizing, and 3) probing the static, dynamic, and topological properties of driven quantum systems. In some cases we will study conceptually pure, minimal models, designed to illustrate the interplay between driving and interactions. We will also investigate realistic, experimentally-motivated models, seeking to understand the key factors and processes that govern the realization of topological phenomena in driven systems, and how to control them. In addition, we will study non-equilibrium probes of correlated systems, focusing on using the nuclear spin environments of electronic systems to probe and control the systems' magnetic properties. Through each of these tracks we will gain valuable new insight into the nature and dynamics of quantum many-body systems, far from equilibrium.
Summary
If the twentieth century was about discovering the basic laws of quantum mechanics, then the twenty first century will be about pushing them to new frontiers and learning how to control them. Condensed matter systems are predicted to host many intriguing and potentially useful quantum phenomena, though materials where they can be realized are rare. This motivates me to seek alternative routes for their realization, and to find new means for controlling quantum many-body systems.
In this project I aim to provide a deeper and broader theoretical understanding of quantum dynamics in driven many-body systems, and to expose new routes for experimental investigation. As a major research theme, my team will investigate possibilities for using time-dependent fields to realize topological phenomena through strong driving. The theoretical description and realization of such phenomena is a multifaceted problem that will serve as a vehicle for elucidating many general aspects of driven quantum dynamics that are relevant on an even broader scale.
To achieve my broad goals I propose an ambitious work plan, organized into three interrelated work packages focused on: 1) characterizing, 2) realizing, and 3) probing the static, dynamic, and topological properties of driven quantum systems. In some cases we will study conceptually pure, minimal models, designed to illustrate the interplay between driving and interactions. We will also investigate realistic, experimentally-motivated models, seeking to understand the key factors and processes that govern the realization of topological phenomena in driven systems, and how to control them. In addition, we will study non-equilibrium probes of correlated systems, focusing on using the nuclear spin environments of electronic systems to probe and control the systems' magnetic properties. Through each of these tracks we will gain valuable new insight into the nature and dynamics of quantum many-body systems, far from equilibrium.
Max ERC Funding
1 205 000 €
Duration
Start date: 2016-02-01, End date: 2021-07-31