Project acronym AQUAMS
Project Analysis of quantum many-body systems
Researcher (PI) Robert Seiringer
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Country Austria
Call Details Advanced Grant (AdG), PE1, ERC-2015-AdG
Summary The main focus of this project is the mathematical analysis of many-body quantum systems, in particular, interacting quantum gases at low temperature. The recent experimental advances in studying ultra-cold atomic gases have led to renewed interest in these systems. They display a rich variety of quantum phenomena, including, e.g., Bose–Einstein condensation and superfluidity, which makes them interesting both from a physical and a mathematical point of view.
The goal of this project is the development of new mathematical tools for dealing with complex problems in many-body quantum systems. New mathematical methods lead to different points of view and thus increase our understanding of physical systems. From the point of view of mathematical physics, there has been significant progress in the last few years in understanding the interesting phenomena occurring in quantum gases, and the goal of this project is to investigate some of the key issues that remain unsolved. Due to the complex nature of the problems, new mathematical ideas
and methods will have to be developed for this purpose. One of the main question addressed in this proposal is the validity of the Bogoliubov approximation for the excitation spectrum of many-body quantum systems. While its accuracy has been
successfully shown for the ground state energy of various models, its predictions concerning the excitation spectrum have so far only been verified in the Hartree limit, an extreme form of a mean-field limit where the interaction among the particles is very weak and ranges over the whole system. The central part of this project is concerned with the extension of these results to the case of short-range interactions. Apart from being mathematically much more challenging, the short-range case is the
one most relevant for the description of actual physical systems. Hence progress along these lines can be expected to yield valuable insight into the complex behavior of these many-body quantum systems.
Summary
The main focus of this project is the mathematical analysis of many-body quantum systems, in particular, interacting quantum gases at low temperature. The recent experimental advances in studying ultra-cold atomic gases have led to renewed interest in these systems. They display a rich variety of quantum phenomena, including, e.g., Bose–Einstein condensation and superfluidity, which makes them interesting both from a physical and a mathematical point of view.
The goal of this project is the development of new mathematical tools for dealing with complex problems in many-body quantum systems. New mathematical methods lead to different points of view and thus increase our understanding of physical systems. From the point of view of mathematical physics, there has been significant progress in the last few years in understanding the interesting phenomena occurring in quantum gases, and the goal of this project is to investigate some of the key issues that remain unsolved. Due to the complex nature of the problems, new mathematical ideas
and methods will have to be developed for this purpose. One of the main question addressed in this proposal is the validity of the Bogoliubov approximation for the excitation spectrum of many-body quantum systems. While its accuracy has been
successfully shown for the ground state energy of various models, its predictions concerning the excitation spectrum have so far only been verified in the Hartree limit, an extreme form of a mean-field limit where the interaction among the particles is very weak and ranges over the whole system. The central part of this project is concerned with the extension of these results to the case of short-range interactions. Apart from being mathematically much more challenging, the short-range case is the
one most relevant for the description of actual physical systems. Hence progress along these lines can be expected to yield valuable insight into the complex behavior of these many-body quantum systems.
Max ERC Funding
1 497 755 €
Duration
Start date: 2016-10-01, End date: 2022-03-31
Project acronym CentrioleBirthDeath
Project Mechanism of centriole inheritance and maintenance
Researcher (PI) Monica BETTENCOURT CARVALHO DIAS
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Country Portugal
Call Details Consolidator Grant (CoG), LS3, ERC-2015-CoG
Summary Centrioles assemble centrosomes and cilia/flagella, critical structures for cell division, polarity, motility and signalling, which are often deregulated in human disease. Centriole inheritance, in particular the preservation of their copy number and position in the cell is critical in many eukaryotes. I propose to investigate, in an integrative and quantitative way, how centrioles are formed in the right numbers at the right time and place, and how they are maintained to ensure their function and inheritance. We first ask how centrioles guide their own assembly position and centriole copy number. Our recent work highlighted several properties of the system, including positive and negative feedbacks and spatial cues. We explore critical hypotheses through a combination of biochemistry, quantitative live cell microscopy and computational modelling. We then ask how the centrosome and the cell cycle are both coordinated. We recently identified the triggering event in centriole biogenesis and how its regulation is akin to cell cycle control of DNA replication and centromere assembly. We will explore new hypotheses to understand how assembly time is coupled to the cell cycle. Lastly, we ask how centriole maintenance is regulated. By studying centriole disappearance in the female germline we uncovered that centrioles need to be actively maintained by their surrounding matrix. We propose to investigate how that matrix provides stability to the centrioles, whether this is differently regulated in different cell types and the possible consequences of its misregulation for the organism (infertility and ciliopathy-like symptoms). We will take advantage of several experimental systems (in silico, ex-vivo, flies and human cells), tailoring the assay to the question and allowing for comparisons across experimental systems to provide a deeper understanding of the process and its regulation.
Summary
Centrioles assemble centrosomes and cilia/flagella, critical structures for cell division, polarity, motility and signalling, which are often deregulated in human disease. Centriole inheritance, in particular the preservation of their copy number and position in the cell is critical in many eukaryotes. I propose to investigate, in an integrative and quantitative way, how centrioles are formed in the right numbers at the right time and place, and how they are maintained to ensure their function and inheritance. We first ask how centrioles guide their own assembly position and centriole copy number. Our recent work highlighted several properties of the system, including positive and negative feedbacks and spatial cues. We explore critical hypotheses through a combination of biochemistry, quantitative live cell microscopy and computational modelling. We then ask how the centrosome and the cell cycle are both coordinated. We recently identified the triggering event in centriole biogenesis and how its regulation is akin to cell cycle control of DNA replication and centromere assembly. We will explore new hypotheses to understand how assembly time is coupled to the cell cycle. Lastly, we ask how centriole maintenance is regulated. By studying centriole disappearance in the female germline we uncovered that centrioles need to be actively maintained by their surrounding matrix. We propose to investigate how that matrix provides stability to the centrioles, whether this is differently regulated in different cell types and the possible consequences of its misregulation for the organism (infertility and ciliopathy-like symptoms). We will take advantage of several experimental systems (in silico, ex-vivo, flies and human cells), tailoring the assay to the question and allowing for comparisons across experimental systems to provide a deeper understanding of the process and its regulation.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-01-01, End date: 2022-12-31
Project acronym CODECHECK
Project CRACKING THE CODE BEHIND MITOTIC FIDELITY: the roles of tubulin post-translational modifications and a chromosome separation checkpoint
Researcher (PI) Helder Jose Martins Maiato
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Country Portugal
Call Details Consolidator Grant (CoG), LS3, ERC-2015-CoG
Summary During the human lifetime 10000 trillion cell divisions take place to ensure tissue homeostasis and several vital functions in the organism. Mitosis is the process that ensures that dividing cells preserve the chromosome number of their progenitors, while deviation from this, a condition known as aneuploidy, represents the most common feature in human cancers. Here we will test two original concepts with strong implications for chromosome segregation fidelity. The first concept is based on the “tubulin code” hypothesis, which predicts that molecular motors “read” tubulin post-translational modifications on spindle microtubules. Our proof-of-concept experiments demonstrate that tubulin detyrosination works as a navigation system that guides chromosomes towards the cell equator. Thus, in addition to regulating the motors required for chromosome motion, the cell might regulate the tracks in which they move on. We will combine proteomic, super-resolution and live-cell microscopy, with in vitro reconstitutions, to perform a comprehensive survey of the tubulin code and the respective implications for motors involved in chromosome motion, mitotic spindle assembly and correction of kinetochore-microtubule attachments. The second concept is centered on the recently uncovered chromosome separation checkpoint mediated by a midzone-associated Aurora B gradient, which delays nuclear envelope reformation in response to incompletely separated chromosomes. We aim to identify Aurora B targets involved in the spatiotemporal regulation of the anaphase-telophase transition. We will establish powerful live-cell microscopy assays and a novel mammalian model system to dissect how this checkpoint allows the detection and correction of lagging/long chromosomes and DNA bridges that would otherwise contribute to genomic instability. Overall, this work will establish a paradigm shift in our understanding of how spatial information is conveyed to faithfully segregate chromosomes during mitosis.
Summary
During the human lifetime 10000 trillion cell divisions take place to ensure tissue homeostasis and several vital functions in the organism. Mitosis is the process that ensures that dividing cells preserve the chromosome number of their progenitors, while deviation from this, a condition known as aneuploidy, represents the most common feature in human cancers. Here we will test two original concepts with strong implications for chromosome segregation fidelity. The first concept is based on the “tubulin code” hypothesis, which predicts that molecular motors “read” tubulin post-translational modifications on spindle microtubules. Our proof-of-concept experiments demonstrate that tubulin detyrosination works as a navigation system that guides chromosomes towards the cell equator. Thus, in addition to regulating the motors required for chromosome motion, the cell might regulate the tracks in which they move on. We will combine proteomic, super-resolution and live-cell microscopy, with in vitro reconstitutions, to perform a comprehensive survey of the tubulin code and the respective implications for motors involved in chromosome motion, mitotic spindle assembly and correction of kinetochore-microtubule attachments. The second concept is centered on the recently uncovered chromosome separation checkpoint mediated by a midzone-associated Aurora B gradient, which delays nuclear envelope reformation in response to incompletely separated chromosomes. We aim to identify Aurora B targets involved in the spatiotemporal regulation of the anaphase-telophase transition. We will establish powerful live-cell microscopy assays and a novel mammalian model system to dissect how this checkpoint allows the detection and correction of lagging/long chromosomes and DNA bridges that would otherwise contribute to genomic instability. Overall, this work will establish a paradigm shift in our understanding of how spatial information is conveyed to faithfully segregate chromosomes during mitosis.
Max ERC Funding
2 323 468 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym Feel your Reach
Project Non-invasive decoding of cortical patterns induced by goal directed movement intentions and artificial sensory feedback in humans
Researcher (PI) Gernot Rudolf Mueller-Putz
Host Institution (HI) TECHNISCHE UNIVERSITAET GRAZ
Country Austria
Call Details Consolidator Grant (CoG), PE7, ERC-2015-CoG
Summary In Europe estimated 300.000 people are suffering from a spinal cord injury (SCI) with 11.000 new injuries per year. The consequences of spinal cord injury are tremendous for these individuals. The loss of motor functions especially of the arm and grasping function – 40% are tetraplegics – leads to a life-long dependency on care givers and therefore to a dramatic decrease in quality of life in these often young individuals. With the help of neuroprostheses, grasp and elbow function can be substantially improved. However, remaining body movements often do not provide enough degrees of freedom to control the neuroprosthesis.
The ideal solution for voluntary control of an upper extremity neuroprosthesis would be to directly record motor commands from the corresponding cortical areas and convert them into control signals. This would realize a technical bypass around the interrupted nerve fiber tracts in the spinal cord.
A Brain-Computer Interface (BCI) transform mentally induced changes of brain signals into control signals and serve as an alternative human-machine interface. We showed first results in EEG-based control of a neuroprosthesis in several persons with SCI in the last decade, however, the control is still unnatural and cumbersome.
The objective of FEEL YOUR REACH is to develop a novel control framework that incorporates goal directed movement intention, movement decoding, error processing, processing of sensory feedback to allow a more natural control of a neuroprosthesis. To achieve this aim a goal directed movement decoder will be realized, and continuous error potential decoding will be included. Both will be finally joined together with an artificial kinesthetic sensory feedback display attached to the user. We hypothesize that with these mechanisms a user will be able to naturally control an neuroprosthesis with his/ her mind only.
Summary
In Europe estimated 300.000 people are suffering from a spinal cord injury (SCI) with 11.000 new injuries per year. The consequences of spinal cord injury are tremendous for these individuals. The loss of motor functions especially of the arm and grasping function – 40% are tetraplegics – leads to a life-long dependency on care givers and therefore to a dramatic decrease in quality of life in these often young individuals. With the help of neuroprostheses, grasp and elbow function can be substantially improved. However, remaining body movements often do not provide enough degrees of freedom to control the neuroprosthesis.
The ideal solution for voluntary control of an upper extremity neuroprosthesis would be to directly record motor commands from the corresponding cortical areas and convert them into control signals. This would realize a technical bypass around the interrupted nerve fiber tracts in the spinal cord.
A Brain-Computer Interface (BCI) transform mentally induced changes of brain signals into control signals and serve as an alternative human-machine interface. We showed first results in EEG-based control of a neuroprosthesis in several persons with SCI in the last decade, however, the control is still unnatural and cumbersome.
The objective of FEEL YOUR REACH is to develop a novel control framework that incorporates goal directed movement intention, movement decoding, error processing, processing of sensory feedback to allow a more natural control of a neuroprosthesis. To achieve this aim a goal directed movement decoder will be realized, and continuous error potential decoding will be included. Both will be finally joined together with an artificial kinesthetic sensory feedback display attached to the user. We hypothesize that with these mechanisms a user will be able to naturally control an neuroprosthesis with his/ her mind only.
Max ERC Funding
1 994 161 €
Duration
Start date: 2016-05-01, End date: 2021-07-31
Project acronym GROWTHPATTERN
Project Coordination Of Patterning And Growth In The Spinal Cord
Researcher (PI) Anna Kicheva
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Country Austria
Call Details Starting Grant (StG), LS3, ERC-2015-STG
Summary Individuals of the same species vary widely in size, but their organs have reproducible proportions and patterns of cell types. How cell fate specification and tissue growth are coordinated during embryonic development to achieve this reproducibility is a fundamental question in biology. Yet, surprisingly little is known about the underlying mechanisms. A major challenge has been to obtain the quantitative data required to assess the dynamics and variability in growth, pattern and signalling by morphogens – molecules that regulate both cell fate specification and tissue growth. I recently established experimental and theoretical approaches that allowed me to reconstruct with unprecedented resolution the three-dimensional growth and pattern of mouse and chick spinal cord. My data revealed a previously unanticipated role of tissue growth dynamics in controlling pattern reproducibility. This quantitative framework provides an exciting opportunity to elucidate the biophysical and molecular mechanisms of growth and pattern coordination. I will use this unique position to understand: 1) how signalling by multiple morphogens is integrated to control pattern, 2) how morphogens control cell cycle kinetics, 3) how morphogen source and target tissue are coupled to achieve pattern reproducibility. To address these issues, I will build on my experience with quantitative analyses to design novel assays where signalling, cell cycle dynamics and transcriptomes can be precisely measured and manipulated with single cell resolution. I will exploit state-of-the-art genome editing techniques to uncouple the critical feedback links and gain a novel perspective on pattern reproducibility and morphogen function. The project will advance our fundamental understanding of tissue morphogenesis and provide novel insights relevant to understanding information processing by signal transduction cascades, morphogen gradient activity, tissue engineering, and cancer biology.
Summary
Individuals of the same species vary widely in size, but their organs have reproducible proportions and patterns of cell types. How cell fate specification and tissue growth are coordinated during embryonic development to achieve this reproducibility is a fundamental question in biology. Yet, surprisingly little is known about the underlying mechanisms. A major challenge has been to obtain the quantitative data required to assess the dynamics and variability in growth, pattern and signalling by morphogens – molecules that regulate both cell fate specification and tissue growth. I recently established experimental and theoretical approaches that allowed me to reconstruct with unprecedented resolution the three-dimensional growth and pattern of mouse and chick spinal cord. My data revealed a previously unanticipated role of tissue growth dynamics in controlling pattern reproducibility. This quantitative framework provides an exciting opportunity to elucidate the biophysical and molecular mechanisms of growth and pattern coordination. I will use this unique position to understand: 1) how signalling by multiple morphogens is integrated to control pattern, 2) how morphogens control cell cycle kinetics, 3) how morphogen source and target tissue are coupled to achieve pattern reproducibility. To address these issues, I will build on my experience with quantitative analyses to design novel assays where signalling, cell cycle dynamics and transcriptomes can be precisely measured and manipulated with single cell resolution. I will exploit state-of-the-art genome editing techniques to uncouple the critical feedback links and gain a novel perspective on pattern reproducibility and morphogen function. The project will advance our fundamental understanding of tissue morphogenesis and provide novel insights relevant to understanding information processing by signal transduction cascades, morphogen gradient activity, tissue engineering, and cancer biology.
Max ERC Funding
1 499 119 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym HUNAYNNET
Project Transmission of Classical Scientific and Philosophical Literature from Greek into Syriac and Arabic
Researcher (PI) Grigory Kessel
Host Institution (HI) OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN
Country Austria
Call Details Starting Grant (StG), SH5, ERC-2015-STG
Summary It is often taken for granted that the Greek-Arabic translation movement (8th-10th c.) that made the whole bulk of Classical Greek scientific and philosophical literature available in Arabic (and that was later handed over to Europe in Latin translations) owes much to the preceding period in the history of transmission of this scientific and philosophical literature, namely translations into the Syriac language that were implemented by Aramaic-speaking Syriac Christians. The problem of continuity between the two periods however has not been tackled thoroughly in scholarship and thus the actual impact of the Syriac translations on later methods of translation has so far not been measured and assessed. One feasible solution to this problem in our understanding of the background to the Greek-Arabic translation movement is to implement a comprehensive comparison of Syriac and Arabic translations by means of lexicographical analysis. This project offers a research tool capable of allowing this comparison. It will combine methods of online lexicography and of corpus linguistics with the aim of presenting in a systematic and rationalized way the lexical data from the entire corpus of Syriac scientific and philosophical translations, comparing and analyzing its terminology and translation techniques, first, with the extant Greek originals and, secondly, with Arabic versions. The lexicographic database will be an effective instrument providing definite data for the study of Syriac and Arabic translations and their close connections. It will reveal how the Syriac translations along with underlying methods and tools that were put to use for the first time ever by Syriac Christians eventually determined the prosperity of the Islamic sciences. Fully endorsing a principle of open access the database creates a new instrument for a study of the history of the transmission of Greek scientific literature in Antiquity and the Middle Ages.
Summary
It is often taken for granted that the Greek-Arabic translation movement (8th-10th c.) that made the whole bulk of Classical Greek scientific and philosophical literature available in Arabic (and that was later handed over to Europe in Latin translations) owes much to the preceding period in the history of transmission of this scientific and philosophical literature, namely translations into the Syriac language that were implemented by Aramaic-speaking Syriac Christians. The problem of continuity between the two periods however has not been tackled thoroughly in scholarship and thus the actual impact of the Syriac translations on later methods of translation has so far not been measured and assessed. One feasible solution to this problem in our understanding of the background to the Greek-Arabic translation movement is to implement a comprehensive comparison of Syriac and Arabic translations by means of lexicographical analysis. This project offers a research tool capable of allowing this comparison. It will combine methods of online lexicography and of corpus linguistics with the aim of presenting in a systematic and rationalized way the lexical data from the entire corpus of Syriac scientific and philosophical translations, comparing and analyzing its terminology and translation techniques, first, with the extant Greek originals and, secondly, with Arabic versions. The lexicographic database will be an effective instrument providing definite data for the study of Syriac and Arabic translations and their close connections. It will reveal how the Syriac translations along with underlying methods and tools that were put to use for the first time ever by Syriac Christians eventually determined the prosperity of the Islamic sciences. Fully endorsing a principle of open access the database creates a new instrument for a study of the history of the transmission of Greek scientific literature in Antiquity and the Middle Ages.
Max ERC Funding
1 498 452 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym InPairs
Project In Silico Pair Plasmas: from ultra intense lasers to relativistic astrophysics in the laboratory
Researcher (PI) LuIs Miguel DE OLIVEIRA E SILVA
Host Institution (HI) INSTITUTO SUPERIOR TECNICO
Country Portugal
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary How do extreme electromagnetic fields modify the dynamics of matter? Will quantum electrodynamics effects be important at the focus of an ultra intense laser? How are the magnetospheres of compact stellar remnants formed, and can we capture the physics of these environments in the laboratory? These are all longstanding questions with an overarching connection to extreme plasma physics.
Electron-positron pair plasmas are pervasive in all these scenarios. Highly nonlinear phenomena such as QED processes, magnetogenesis, radiation, field dynamics in complex geometries, and particle acceleration, are all linked with the collective dynamics of pair plasmas through mechanisms that remain poorly understood.
Building on our state-of-the-art models, on the availability of enormous computational power, and on our recent transformative discoveries on ab initio modelling of plasmas under extreme conditions, the time is ripe to answer these questions in silico. InPairs aims to understand the multidimensional dynamics of electron-positron plasmas under extreme laboratory and astrophysical fields, to determine the signatures of the radiative processes on pair plasmas, and to identify the physics of the magnetospheres of compact stellar remnants, focusing on the electrodynamics of pulsars, that can be mimicked in laboratory experiments using ultra high intensity lasers and charged particle beams.
This proposal relies on massively parallel simulations to bridge the gap, for the first time, between the pair plasma creation mechanisms, the collective multidimensional microphysics, and their global dynamics in complex geometries associated with laboratory and astrophysical systems. Emphasis will be given to detectable signatures e.g. radiation and accelerated particles, with the ultimate goal of solving some of the central questions in extreme plasma physics, thus opening new connections between computational studies, laboratory experiments, and relativistic plasma astrophysics.
Summary
How do extreme electromagnetic fields modify the dynamics of matter? Will quantum electrodynamics effects be important at the focus of an ultra intense laser? How are the magnetospheres of compact stellar remnants formed, and can we capture the physics of these environments in the laboratory? These are all longstanding questions with an overarching connection to extreme plasma physics.
Electron-positron pair plasmas are pervasive in all these scenarios. Highly nonlinear phenomena such as QED processes, magnetogenesis, radiation, field dynamics in complex geometries, and particle acceleration, are all linked with the collective dynamics of pair plasmas through mechanisms that remain poorly understood.
Building on our state-of-the-art models, on the availability of enormous computational power, and on our recent transformative discoveries on ab initio modelling of plasmas under extreme conditions, the time is ripe to answer these questions in silico. InPairs aims to understand the multidimensional dynamics of electron-positron plasmas under extreme laboratory and astrophysical fields, to determine the signatures of the radiative processes on pair plasmas, and to identify the physics of the magnetospheres of compact stellar remnants, focusing on the electrodynamics of pulsars, that can be mimicked in laboratory experiments using ultra high intensity lasers and charged particle beams.
This proposal relies on massively parallel simulations to bridge the gap, for the first time, between the pair plasma creation mechanisms, the collective multidimensional microphysics, and their global dynamics in complex geometries associated with laboratory and astrophysical systems. Emphasis will be given to detectable signatures e.g. radiation and accelerated particles, with the ultimate goal of solving some of the central questions in extreme plasma physics, thus opening new connections between computational studies, laboratory experiments, and relativistic plasma astrophysics.
Max ERC Funding
1 951 124 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym MagnonCircuits
Project Nano-Scale Magnonic Circuits for Novel Computing Systems
Researcher (PI) Andrii Chumak
Host Institution (HI) UNIVERSITAT WIEN
Country Austria
Call Details Starting Grant (StG), PE3, ERC-2015-STG
Summary Magnons – quanta of spin waves – propagating in magnetic materials having nano-scale wavelengths and carrying information in the form of a spin angular momentum, can be used as data carriers in next-generation nano-sized low-loss information processing systems. The low losses of magnonic systems can be reached due to the absence of translational electron motion associated with Joule heat-ing and extremely low magnetic damping in the dielectric Yttrium-Iron-Garnet (YIG) material used.
The recent revolutionary progress in the growth of high-quality YIG films with nanometer thickness, and in the patterning of these films, opened a way to the practical development of nano-scale mag-nonic computing systems. However, the decrease in sizes of YIG structures to sub-100 nm requires the development of the physical knowledge base for understanding linear and nonlinear magnetization dynamics in nanostructures.
The strategic goal of the proposed MagnonCircuits research program is to make a transformative change in the data processing paradigm from traditional electronics to magnon spintronics. The ingre-dients required for such a transformation and addressed by MagnonCircuits are: (i) The fabrication of magnon conduits of sub-100 nm width, the development of a toolbox enabling excitation and de-tection of fast exchange magnons, and the understanding of the physics underlying magnon dynamics at the nano-scale in the exchange interaction regime. (ii) Employment of such novel physical phenom-ena as spin pumping, spin transfer torque and spin Hall effect to overcome the fundamental limita-tions of the state-of-the-art approaches in magnon spintronics, and to compensate the dissipation in magnonic circuits. (iii) Realization of two-dimensional magnonic circuits required for transport and processing of magnon-carried data. A proof-of-concept models of two nano-scale devices – majority gate and magnon transistor – will be developed in the course of MagnonCircuits.
Summary
Magnons – quanta of spin waves – propagating in magnetic materials having nano-scale wavelengths and carrying information in the form of a spin angular momentum, can be used as data carriers in next-generation nano-sized low-loss information processing systems. The low losses of magnonic systems can be reached due to the absence of translational electron motion associated with Joule heat-ing and extremely low magnetic damping in the dielectric Yttrium-Iron-Garnet (YIG) material used.
The recent revolutionary progress in the growth of high-quality YIG films with nanometer thickness, and in the patterning of these films, opened a way to the practical development of nano-scale mag-nonic computing systems. However, the decrease in sizes of YIG structures to sub-100 nm requires the development of the physical knowledge base for understanding linear and nonlinear magnetization dynamics in nanostructures.
The strategic goal of the proposed MagnonCircuits research program is to make a transformative change in the data processing paradigm from traditional electronics to magnon spintronics. The ingre-dients required for such a transformation and addressed by MagnonCircuits are: (i) The fabrication of magnon conduits of sub-100 nm width, the development of a toolbox enabling excitation and de-tection of fast exchange magnons, and the understanding of the physics underlying magnon dynamics at the nano-scale in the exchange interaction regime. (ii) Employment of such novel physical phenom-ena as spin pumping, spin transfer torque and spin Hall effect to overcome the fundamental limita-tions of the state-of-the-art approaches in magnon spintronics, and to compensate the dissipation in magnonic circuits. (iii) Realization of two-dimensional magnonic circuits required for transport and processing of magnon-carried data. A proof-of-concept models of two nano-scale devices – majority gate and magnon transistor – will be developed in the course of MagnonCircuits.
Max ERC Funding
1 487 969 €
Duration
Start date: 2016-06-01, End date: 2021-11-30
Project acronym RESPONSIVENESS
Project The Microfoundations of Authoritarian Responsiveness: E-Participation, Social Unrest and Public Policy in China
Researcher (PI) Christian Goebel
Host Institution (HI) UNIVERSITAT WIEN
Country Austria
Call Details Starting Grant (StG), SH2, ERC-2015-STG
Summary "China’s success story of the past three decades is seen as an anomaly. Market-based reforms have generated an economic system that can hardly be described as socialist anymore, but the Communist Party of China remains in power. Although social unrest is on the rise, the CCP enjoys the consent of the overwhelming majority of its people. Most agree that China’s economic performance is the key to solving this apparent puzzle, but how can extraordinary high rates of public support be maintained in a country where income inequality is so extreme?
We believe that the answer to this question lies in the responsiveness of China’s authoritarian one-party regime to popular demands and grievances, a capability that has so far been attributed only to democratic regimes. We further believe that the rapid improvement of e-participation, the opportunity to evaluate public services on the Internet, has greatly facilitated regime responsiveness - China’s score in the United Nations e-participation index is higher than the European average. We suggest, however, that as the government increasingly calibrates public policy towards satisfying the demand of China’s netizens, the ""technologically illiterate"" are forced to express their demands in public protests and other forms of social unrest.
The proposed project sheds light on the intended and unintended consequences of enhanced e-participation in China by exploring which social interests China’s rulers incorporate into public policy making, and how these decisions influence the propensity of particular social groups to voice their demands by either participating online or taking to the streets. By exploring the “complex system” in which online complaints, social unrest and public policy interact, the project provides insights into the micro-foundations of regime responsiveness in China. It thereby increases our knowledge of how the CCP seeks to defer the antagonism that prompted the revolutions in Egypt, Tunisia and Syria."
Summary
"China’s success story of the past three decades is seen as an anomaly. Market-based reforms have generated an economic system that can hardly be described as socialist anymore, but the Communist Party of China remains in power. Although social unrest is on the rise, the CCP enjoys the consent of the overwhelming majority of its people. Most agree that China’s economic performance is the key to solving this apparent puzzle, but how can extraordinary high rates of public support be maintained in a country where income inequality is so extreme?
We believe that the answer to this question lies in the responsiveness of China’s authoritarian one-party regime to popular demands and grievances, a capability that has so far been attributed only to democratic regimes. We further believe that the rapid improvement of e-participation, the opportunity to evaluate public services on the Internet, has greatly facilitated regime responsiveness - China’s score in the United Nations e-participation index is higher than the European average. We suggest, however, that as the government increasingly calibrates public policy towards satisfying the demand of China’s netizens, the ""technologically illiterate"" are forced to express their demands in public protests and other forms of social unrest.
The proposed project sheds light on the intended and unintended consequences of enhanced e-participation in China by exploring which social interests China’s rulers incorporate into public policy making, and how these decisions influence the propensity of particular social groups to voice their demands by either participating online or taking to the streets. By exploring the “complex system” in which online complaints, social unrest and public policy interact, the project provides insights into the micro-foundations of regime responsiveness in China. It thereby increases our knowledge of how the CCP seeks to defer the antagonism that prompted the revolutions in Egypt, Tunisia and Syria."
Max ERC Funding
1 292 440 €
Duration
Start date: 2016-05-01, End date: 2021-10-31
Project acronym VINCAT
Project A Unified Approach to Redox-Neutral C-C Couplings: Exploiting Vinyl Cation Rearrangements
Researcher (PI) Nuno Xavier Dias Maulide
Host Institution (HI) UNIVERSITAT WIEN
Country Austria
Call Details Consolidator Grant (CoG), PE5, ERC-2015-CoG
Summary The preparation of complex molecular architectures employing multi-component reactions where the number of bond-forming events is maximised is a central goal of the discipline of Organic Synthesis. The contemporary, pressing need for sustainable chemical reactions has raised the demand for novel reaction families that explore the concept of redox-neutrality and proceed with the generation of minimal waste. In this proposal, I present a unified and conceptually novel approach to atom-economical C-C bond formation in challenging contexts without the need for transition metal promoters or reagents. To this end, I propose the innovative harvesting of the potential of vinyl cation intermediates as platforms for the deployment of nucleophilic entities capable of orchestrating rearrangement reactions. The combination of such high-energy intermediates, generated under mild conditions, with the power of carefully designed rearrangements leads to an array of useful new transformations. Furthermore, the very high atom-economy and simplicity of these reactions renders them not only sustainable and environmentally friendly but also highly appealing for large-scale applications. Additional approaches to enantioselective synthesis further enhance the methods proposed.
The paradigm proposed herein for the exploitation of vinyl cations will also open up new vistas in the centuries-old aldol reaction and in amination chemistry. This showcases the vast potential of these simple principles of chemical reactivity. The myriad of new reactions and new product families made possible by VINCAT will decisively enrich the toolbox of the synthetic practitioner.
Summary
The preparation of complex molecular architectures employing multi-component reactions where the number of bond-forming events is maximised is a central goal of the discipline of Organic Synthesis. The contemporary, pressing need for sustainable chemical reactions has raised the demand for novel reaction families that explore the concept of redox-neutrality and proceed with the generation of minimal waste. In this proposal, I present a unified and conceptually novel approach to atom-economical C-C bond formation in challenging contexts without the need for transition metal promoters or reagents. To this end, I propose the innovative harvesting of the potential of vinyl cation intermediates as platforms for the deployment of nucleophilic entities capable of orchestrating rearrangement reactions. The combination of such high-energy intermediates, generated under mild conditions, with the power of carefully designed rearrangements leads to an array of useful new transformations. Furthermore, the very high atom-economy and simplicity of these reactions renders them not only sustainable and environmentally friendly but also highly appealing for large-scale applications. Additional approaches to enantioselective synthesis further enhance the methods proposed.
The paradigm proposed herein for the exploitation of vinyl cations will also open up new vistas in the centuries-old aldol reaction and in amination chemistry. This showcases the vast potential of these simple principles of chemical reactivity. The myriad of new reactions and new product families made possible by VINCAT will decisively enrich the toolbox of the synthetic practitioner.
Max ERC Funding
1 940 025 €
Duration
Start date: 2017-01-01, End date: 2021-12-31