You are here

15-07-2016 | © picture 2 mins read

Minerals reveal the flow patterns inside the Earth

The Earth is made of layers, just like a big onion, composed of different materials. However, the compounds forming these layers are not static, flowing from one stratum to another, following patterns still not entirely understood. Prof. Patrick Cordier tries to model the real conditions minerals are subjected to beneath the Earth’s crust. His aim is to understand the forces driving tectonic plates so we can better comprehend phenomena like earthquakes and volcanic eruptions.

26-04-2016 | Illustration © Eifel forest near the Viktoriaquelle water well. - Photo © Centre de Recherches Petrographiques et Geochimiques 2 mins read

A trace gas analysed in mineral spring water in Germany gives clues on the origins of the Earth

Researchers supported by the ERC have sampled magmatic gases derived from the Earth's mantle in the Eifel region in Germany. Their analysis of xenon, a rare and inert gas, sampled in bubbling mineral water could bring new insights into the origin of volatile elements, water and gases, that allowed life to develop on Earth.

27-08-2013 | Cells of coccolithophore genera Gephyrocapsa grown in laboratory culture 3 mins read

Marine algae reveal close link between past climate and CO2

The ocean is filled with microscopic algae that take up carbon dioxide (CO2) from the atmosphere in order to grow. A new study by researchers from the Geology Department at the University of Oviedo (Spain) shows that the algae may adapt to rising levels of atmospheric CO2 much sooner than previously thought, and in an unexpected way. This study, published today in Nature and co-authored by ERC grantee Heather Stoll, also provides evidence for a much closer link between atmospheric CO2 decrease and cooling and glaciations in the geological past.

09-07-2012 | Cells of coccolithophore genera Gephyrocapsa grown in laboratory culture 3 mins read

Tiny fossils can lead to huge gains in understanding

The ocean is filled with microscopic algae that take up carbon dioxide (CO2) from the atmosphere in order to grow. A new study by researchers from the Geology Department at the University of Oviedo (Spain) shows that the algae may adapt to rising levels of atmospheric CO2 much sooner than previously thought, and in an unexpected way. This study, published today in Nature and co-authored by ERC grantee Heather Stoll, also provides evidence for a much closer link between atmospheric CO2 decrease and cooling and glaciations in the geological past.