You are here

25-07-2019 | © picture

Lost and found in the largest structures of the universe

On a clear summer night, look up to the sky and what do you see? Ordinary matter such as planets, stars maybe even an asteroid. Millions of little specks, as far as the eyes can reach. This ordinary matter, also known as baryonic matter, is the primary observable component of our universe. But is what we see all that is out there?

11-01-2018 | Artist's impression of PicSat in orbit around the Earth. PicSat rendering © Lesia / Observatoire de Paris; Background image T. Pesquet ESA / NASA

Tiny, but not afraid of the big

If you raise your eyes to the sky, you won't see it but you might sense it passing by. On 12 January just before sunrise in Europe, PicSat, a cube satellite as big as a shoebox and barely as heavy as a brick, will be launched from the Satish Dhawan Space Centre in Sriharikota, India. Supported with a grant from the European Research Council, it is the first nanosatellite to embark on one of the greatest space adventures: exploring, from afar, an exoplanet.

24-04-2013 | An artist’s impression of the PSR J0348+0432 binary system. The pulsar is extremely compact, leading to a strong distortion of space-time (illustrated by the green mesh). The white-dwarf companion is shown in light-blue - ©J. Antoniadis/MPIfR

A heavyweight for Einstein: Probing gravity where no one has done it before

An international research team led by astronomers from the Max Planck Institute for Radio Astronomy (MPIfR, Bonn, Germany) used a collection of large radio and optical telescopes to investigate a newly discovered pulsar, and its white dwarf companion. The observations revealed a system with unusual properties, which weighs twice as much as the Sun, making it the most massive neutron star to date. These findings partly result from the “BEACON” project led by ERC Starting grantee Dr Paulo Freire, and agree with Einstein’s theory on general relativity. They will be published in tomorrow’s issue of Science, April 26, 2013.