You are here

11-07-2018

2965Growing intestinal organoids to open new research avenues in gut diseases

Epithelial tissues cover all body surfaces and line most of our organs, internal cavities and passageways, including the digestive tract. Prof. Elena Martínez is engineering intestinal epithelial tissues that mimic the physiological characteristics of human intestinal tissue with the aim of advancing the in vitro modelling of diseases, the preclinical screening for drug efficacy and toxicity, and the understanding of organ development.

11-07-2018

2964Mimicking nature to create new super materials

Nature is a major source of inspiration for scientists. ERC grantee Giulia Lanzara is one of them. The unique sensing and shaping abilities of birds, dolphins and other living creatures inspired her to engineer novel multifunctional materials which could make a difference in a wide variety of industrial fields.

23-04-2018

2848The beauty of frozen particles

Emulsions play a key role both in natural and industrial processes, as they allow the combination of two liquids that do not normally mix and make the blend stable. Yet, when materials solidify or freeze, the complex interactions that take place and affect the final microstructure of the solidified components, are still poorly understood. ERC grantee Sylvain Deville and his team at CNRS have showed that it is possible to use an optical imaging technique to study the freezing of emulsions while the process takes place, a novel method presented in the prestigious journal Science.

18-04-2018

2833Inspired by nature: bionic spider webs and other super-materials

Metal fatigue and ice-layer accumulation are challenges faced by the aviation industry and prove costly in terms of fuel waste. Sometimes nature can provide solutions to problems such as these. ERC grantee Nicola Pugno combines biological observations with nanotechnology to create some of the most remarkable materials in the world.

31-03-2017

2971Two-dimensional materials for a multi-dimensional future

Prof. Nicolosi received a BSc with honors in Chemistry from the University of Catania, Italy, and Ph.D. in Physics from Trinity College Dublin. Today she is Professor of Nanomaterials & Advanced Microscopy at the School of Chemistry, Trinity College Dublin, and principal investigator at the Centers for Research on Adaptive Nanostructures and Nanodevices (CRANN) and for Advanced Materials and BioEngineering (AMBER). Her interdisciplinary research focuses on low-dimensional nanomaterials, including graphene. She received three top-up ERC Proof of Concept grants to commercialize her findings.

Originally published in March 2017 as part of the multimedia campaign "ERC - 10 years – 10 portraits."

19-07-2016

1321Carbon Nanotubes: manufacturing steps to commercialisation

Stronger than steel, conducting electricity better than copper and heat better than diamonds: these are some of the promises held by carbon nanomaterials. Although not as well-known as graphene, carbon nanotubes (CNTs) show these properties – offering also a great advantage: they can be produced in larger quantities. Prof. Michael De Volder now explores new ways to manufacture CNTs-based devices with optimal features, potentially opening the way to their broader commercial use.

27-10-2015

1289The secrets of the Earth’s deep interior

The inner core of our planet was discovered more than 65 years ago and since then Earth scientists have been investigating to understand more about its precise structure and geodynamic properties. Many fundamental questions still remain unanswered. Supported by the ERC, Dr Arwen Deuss has achieved some impressive results in this field.

28-04-2015

1240Engineering safer cities

How can we guarantee the integrity of existing buildings while continuing to develop urban spaces? Professor Debra Laefer's ERC-funded project tackles fundamental problems at the interface between new engineering undertakings and building conservation. The research team will draw on a largely unmined data source to create a system to predict the degree of damage likely to be sustained by buildings as a result of tunnelling.

16-02-2015

1235Exploring the potential of new orbits for future space services

Space exploration may one day reveal clues to the origin of the universe and life on Earth. In the meantime, scientific advances in the field have supported “space services” for everyday life such as weather forecasts and satellite navigation on our phones. With his ERC grant, space engineer Prof. Colin McInnes explored the mathematics of new families of orbits around the Earth for spacecraft, from micro-satellites to large solar sails. The objective was to map these orbits and to uncover potential applications for new space technologies in fields as diverse as space science, Earth observation and telecommunications.  

26-11-2014

1232The aftermath of a tsunami

A research background in earthquake engineering seems at first sight like an unusual fit with studying tsunamis. But on her return from Sri Lanka in the wake of the 2004 tsunami, Professor Tiziana Rossetto discovered that very little research had been done into the effects of tsunamis on coastal infrastructure and she wanted to find out more. She will be presenting this research to the public at the TEDx Brussels event on 1 December.