2294Understanding membrane trafficking in space and time

ERC grantee Prof. Maria Antonietta De Matteis studies membrane trafficking in cells and how its components interact and are regulated to guarantee a healthy cell function. Her work could revolutionise our understanding of this key biological process.


1326Novel therapy starves the engine driving cancer cell growth

European researchers have identified a novel approach to prevent the growth of cancer tumours and inhibit them from spreading, potentially leading to highly effective treatments with fewer side effects.


1146New landmark in epigenetics: understanding the silencing of the X-chromosome

While women inherit two X chromosomes, the expressions of one of them is shut down during embryonic development. Men have one X chromosome and one Y chromosome. The switching off of women’s second X chromosome is thought to compensate for the presence of only one X in males versus two in females, to balance for X-linked gene products between the sexes. X-chromosome inactivation is also one of the clearest examples of what epigenetic mechanisms do to our genetic material: the DNA of the genes on the X is still present but not actively expressed or needed. Prof. Edith Heard was awarded ERC grants to understand the intricate processes behind the phenomenon, with unexpected results that changed the way gene regulation is now looked at.


1278Researchers discover how genetic mutations rewire cancer cells

An international team of researchers, led by ERC grantee Prof Rune Linding, discovered how genetic cancer mutations attack the networks controlling human cells. This knowledge is critical for the future development of personalized precision cancer treatments.