

Organs-on-chip models of inherited small vessel diseases in drug discovery

Induced Pluripotent Stem Cells from Patients with ROW

Bellin and Mummery Nat. Rev. Mol. Cell Biol. 2012

liver toxicity tests

Inherited small vessel diseases (hSVDs)

Hereditary hemorrhagic telangiectasia (HHT)

- weak blood vessels
- autosomal dominant mutation in TGFβ- signal transduction genes
- Expect leaky blood vessels, reduced EC proliferation, poor vSMC EC interaction

CHEEK **TELEANGIECTASIAS**

Brouillard, P., & Vikkula, M. Human molecular genetics, 2007

NASAL **TELEANGIECTASIAS**

Goumans, M.-J. & Dijke, ten, P. Cell Research, 2009 nasal telangiectases (courtesy Dr U Geisthoff)

PULMONARY ARTERIOVENOUS **MALFORMATIONS (PAVM)**

3D blood vessels-on-chip from patient stem cells

Hereditary Hemorrhagic Telangiectasia (HHT)

Adapted from Thalgott et al Frontiers in Gen. 2015

Vessels-on-chip

(Orlova et al)

3D blood vessels-on-chip from patient stem cells

(1) Defective endothelial-pericyte cell interaction;

3D blood vessels-on-chip from patient stem cells

- (1) Deffective endothelial-pericyte cell interaction;
- (2) Increased vascular leakage

Drugs selected for repurposing in a clinical trial on the basis of human disease model in OoC format

	Blood capillary stabilization	Anti-angiogenic properties	Anti-inflammatory properties	Immunomodulatory properties	side-effects	estimated cost per month
Thalidomide	Ø	V	V	Ø	Ø	\$ 393.00
Bevacizumab	Ø	V			Ø	\$ 21 083.00
Tacrolimus	?	?	Ø	Ø	Ø	\$ 1068.00
Itraconazol	?	Ø	Ø	?	Ø	\$ 600.00
small chemical inhibitor targeting Pi3Kinase (Idelalisib)	?	V	V	Ø	Ø	\$ 4062.00

Mechanisms of drug action, targeting different pathways relevant to HHT as possible therapeutics

6 of 8 patients improved with Thalidomide but some had side effects (Nature Medicine 2010)

Inclusion of 1st HHT patient for Itraconazol *September 2019* Of 21 patients, 4 terminated with side-effects, rest had reduced nosebleed frequency and severity. No reduction in anaemia (*Kroon et al Angiogenesis 2020*)

Summary

- We can derive blood vessel and inflammatory cells isogenically from hPSC
- We can recapitulate some disease phenotypes in 2D but others require 3D under microfluidic flow (Organ-on-Chip formats)
- Some models can already be used to identify drugs suitable for repurposing

Hurdles to model implementation:

- Conversion to high throughput formats
- Standardization and independent qualification of organ-on-chip devices and input cells
- Availability of appropriate drug- and gene-libraries for screening