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Machine learning

Scientific context

• Proliferation of digital data (+1019 bytes per day)

– Personal data

– Industry

– Scientific: from bioinformatics to humanities

• Need for automated processing of massive data

• Series of “hypes”

Big data → Data science → Machine Learning

→ Deep Learning → Artificial Intelligence



An AI revolution?
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person ride dog

From translate.google.fr From Peyré et al. (2017)

(1) Massive data

(2) Computing power

(3) Methodological and scientific progress

“Intelligence” = models + algorithms + data

+ computing power
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Machine learning

• Scientific domain for 30+ years 6= AI

– Building predictions from examples

– Conferences NIPS, COLT and ICML + Journal JMLR

• Theory, algorithms and applications

• Growth from 2000 to 2018

– NIPS: from 150 to 1000 articles, from 300+ to 8000 attendees

– Impact from/on industry: between users and contributors



Supervised machine learning

A simplified view

From Yann Le Cun’s lecture



Supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction as linear functions 〈θ,Φ(x)〉 =
∑d

j=1
θjΦj(x)

of features Φ(x) ∈ R
d

• Empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

ℓ
(

yi, 〈θ,Φ(xi)〉
)

+ µΩ(θ)

Data fitting term + regularization

• Main practical challenges

−− Designing/learning good features Φ(x)

−− Efficiently solving the optimization problem
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– Natural language processing, etc.



Supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n
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• Main practical challenges

– Designing/learning good features Φ(x)

– Efficiently solving the optimization problem



New scientific challenges in machine learning

• Supervised machine learning well understood

– Running at scale with optimization methods (single machine)

– Dealing with high dimension through sparsity

– Neural networks
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Deep learning

• Shallow / non-deep learning

– Prediction as linear function 〈θ,Φ(x)〉 =
∑d

j=1
θjΦj(x)

of known features Φ(x) ∈ R
d

– Optimization (single machine) and theory well understood

– Widespread use in industry (e.g., marketing and advertising)

• Deep neural networks

– Learning of features from data

– Parametrization by combination of simple operations (+GPU)

– Optimization and theory not totally understood

– Works very well in vision / NLP with lots of training examples



Neural networks

A single neuron

Figures from Goodfellow et al. (2016)

Linear prediction: σ(w0x0 + w1x1 + w2x2 + w3x3)



Deep neural networks

Non-linear prediction: θ⊤mσ(θ⊤m−1
σ(· · · θ⊤

2
σ(θ⊤

1
x))



New scientific challenges in machine learning

• Supervised machine learning well understood

− Running at scale with optimization (single machine)

− Dealing with high dimension through sparsity

− Neural networks

• Structured prediction: beyond binary or real-valued outputs

• Unsupervised learning: weak supervision and relevance of results

• Reinforcement learning: mixing actions and predictions

• Distributed optimization: GPU / multi-cores / cloud

• Non-convex optimization: neural networks

• Robust optimization: beyond i.i.d. assumption



SEQUOIA : Robust algorithms

for learning from modern data

• Consolidator grant started in September 2017

– Between theory, algorithms and applications

• Ambition

– Provable robustness and adaptivity to modern hardware and

learning problems

• Main focus

– Optimization algorithms

– Theoretical guarantees and good empirical performance
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Hot from the press

(Pillaud-Vivien, Rudi and Bach, NIPS 2018)

• Stochastic gradient descent for large-scale machine learning

– Processes observations one by one

• Theory: Single pass SGD is optimal

– Only for “easy” problems

• Practice: Multiple pass SGD always works better

– Provable for “hard” problems

– Quantification of required number of passes

– Optimal statistical performance


