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The issue with current robots is not that they fail...
... it is that they do not get back on their feet and try again

"= Current robots do not deal well with unexpected situations (e.g., damage)
"=> Current robots do not learn from their mistakes
"= Main reason: diagnosis / understanding problems is hard! 4



the other end of the spectrum

:0: AlphaGo

4.9 million games
(self-play) / 40 days

Atari games : . = - P ==

Amount of data .
ﬁ « M|Cro_data »

« Big-Data » Simulated Real l
l world world

Deep learning? 1-20 trials ?

Evolution? A few minutes "

Mouret, JB. (2016) "Micro-Data Learning: The Other End of the Spectrum." ERCIM News.



policy search

Parameters of the policy

- \
Optimize: J(@) =E E r(x:)|0
| t=1 J
Objective Reward for state xi
sto policy expected return
SYSEm r(ul, t,0) J(6) =E|R(r)|6)
4 4 -
models P(Zt+1|Te, ws, Dy, -, D) HS S J(0|Dy,---,Dy)
model-based policy search sl 5 Bayesian optimization
1 t
_ p(f) p(m) p(#) p(J)
riors rior on ' .
p e G gtructure 5 5’; ?nrg‘r;rs prior on expected return

1 ! f 1

In nature: evolution & experience

K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, J.-B. Mouret. (2018). A survey on policy search
algorithms for learning robot controllers in a handful of trials. arXiv:1807.02303
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Strategy 1:

Xi41 = X¢ T+ f(Xt, ut) + W //"““}Optimal
policy (in

. Probabilistic
state BN the model
next state dynamics\Ngoise o )

Chatzilygeroudis K, Rama R, Kaushik R, Goepp D, Vassiliades V, Mouret JB. (2017) Black-Box Data-efficient Policy

Search for Robotics. Proc. of IEEE IROS.
Deisenroth, M. P., Fox, D., & Rasmussen, C. E. (2015). Gaussian processes for data-efficient learning in robotics and

control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2), 408-423.



Policy Search for

'

dynamics

p($t+1 |$t, 'U't)

T

models ﬁ($t+1|wt7ut: Dl: T ;DN)
model-based policy search
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p(f)

prior on dynamics
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system
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policy
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p(r) p(0)
prior on prior on
structure parameters
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Model of the intact robot

'

expected return
J(0) =E {R(T)W}

T

J(0|Dy,---,D,)
Bayesian optimization
p(J)
prior on expected return

T




BICk-DROPS

y space: 36D

Control rate: |10Hz

Prior (tunable black-box simulator):

next state Simulator / model  Other dynamics

Chatzilygeroudis K, Mouret J.-B. (2018) Using Parameterized Black-Box Priors to Scale Up
Model-Based Policy Search for Robotics. Proc. of ICRA.



Strategy 2:

The MAP-Elites algorithm generates the search space (prior)
In simulation, with an intact robot
many evaluations [simulation]
“take the needles out of the haystack”
provide an expected performance for the “needles”

Prior-based Bayesian optimization does the online learning
search only among good solutions ("needles”)
fast trial-and-error (thanks to pre-computed “needles”)
few evaluations [real robot]

Offline: Evolution-based Elite reduction Online: prior-based Bayesian optimization

N
/ N >
A B

Confidence
level
Performance

simulation . ';.-i:-.‘.,
o ~ (undamaged)
High-dimensional
search space

Diversity Adaptation

.‘l ‘f;' projection
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Strategy 2:




Challenge:
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Strategy 2:
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Controller : periodical signals (36 parameters)

- No information about the damage

Cully, A. and Clune, J. and Tarapore, D. and Mouret, J.-B. (2015). Robots that can adapt like
S animals. Nature. Vol 521 Pages 503-507.
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Strategy 2:

classic tripod gait,
damaged robot
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% - Mv‘lfﬁ:ﬁL'-L“,‘?L%

'-."_._.ﬁ\:,. - = Forward Speed (m/s)

Trajectory

Controller : periodical signals (36 parameters)

No information about the damage

) e Cully, A. and Clune, J. and Tarapore, D. and Mouret, J.-B. (2015). Robots that can adapt like
» animals. Nature. Vol 521 Pages 503-507. 14
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Planning (I\/ICTS) +

K. Chatzilygeroudis, V. Vassiliades, and J.-B. Mouret (2018). Reset-free Trial-and-Error Learning for
Data-Efficient Robot Damage Recovery. Robotics and Autonomous Systems.




What do you | want to achieve?

Fast adaptation in the real world: a few minutes
"= Much more autonomy

"= \/ersatile robots for versatile missions

"=> Animals vs “superhuman”

4 '\ ]




What do you | want to achieve?

Fast adaptation in the real world: a few minutes
"= Much more autonomy

"= \/ersatile robots for versatile missions

"= More animals than “superhuman”

17



What do we need In term of science?

Amount of data

« B|g_Data »ﬁ « I\/“Cro_data »

Simulated Real  1-20 trials
world world A few minutes

1.Algorithms that can adapt with little data: most current learning does

not real

v work on real machines & systems

2. Algorit
curious

nMs that can explore with rare rewards (e.g., door opening):
machines / exploration

3. Prior knowledge is a key: from big data, models, engineering, ...

4. Probabillistic predictive models of the world: know what you do not

know

= data-efficiency (search in the model)
= “passive” acquisition (unsupervised)
= “optimal” planning under uncertainty

5. Safety during learning: for the robot & for the environment

6.Continuous / long-term learning / avoid catastrophic forgetting

18



What do we need from society?

Focus on the important questions:

1. Autonomous robots are far from being able to “take over the world”

2. but “"dumb” robots will be deployed and are more dangerous
®* Dbad context awareness = bad decisions / accidents / biased decisions
"= a dumb robot is more dangerous than a “smart” one
® robots ~ pets: they should NOT be dangerous for the world

Difficulty = (Complexity of task) x (Complexity of Environment) x (Cost of mistake)

Big Hero 6 (2014)



Conclusion

10; AlphaGo

" 1 i
11T TR
TEMEEIANE

We achieved a lot In machine learning (e.g., deep learning)
... but this is not enough for robots (yet)

we need algorithms that allow robots to adapt in a few
minutes / a few trials

We should be more afraid by "dumb robots” than from “smart
robots”

20
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- Videos & papers: http://members.loria.fr/jbmouret h"f“’“”“”“’”‘m’
- ERC Project: http://lwww.resilient-robots.net m—
- code (C++11): http://github.com/resibots
- contact: jean-baptiste.mouret@inria.fr e:rc
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.

Sylvain Koos Paul Tonelli Antoine Cully Brice Clément Rituraj Kaushik Vassilis Vassiliades

2

Danesh Tarapore J.-M. Jehanno Dorian Goepp K. Chatzilygeroudis Adam Gaier
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MAP-Elites: 6-legged locomotion




MAP-Elites: 6-legged locomotion




