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Fukushima (2011) 

lost DARPA Robotics Challenge, 2015 
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The issue with current robots is not that they fail… 

… it is that they do not get back on their feet and try again 

➟ Current robots do not deal well with unexpected situations (e.g., damage) 

➟ Current robots do not learn from their mistakes 

➟ Main reason: diagnosis / understanding problems is hard! 

Learn new behaviours by trial-and-error? 



« Big-Data »  

Deep learning? 

Evolution? 

Amount of data 
« Micro-data »  

1-20 trials 

A few minutes 

Atari games : 

38 days 

4.9 million games 

(self-play) / 40 days 

Mouret, JB. (2016) "Micro-Data Learning: The Other End of the Spectrum." ERCIM News. 

Micro-data: the other end of the spectrum 

? 

Robots need micro-data learning 

Simulated 

world 

Real 

world 
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Micro-data policy search 
Parameters of the policy 

Reward for state xt Objective 

Optimize: 

In nature: evolution & experience 

K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, J.-B. Mouret. (2018). A survey on policy search 

algorithms for learning robot controllers in a handful of trials. arXiv:1807.02303 

 

 



 

Chatzilygeroudis K, Rama R, Kaushik R, Goepp D, Vassiliades V, Mouret JB.  (2017) Black-Box Data-efficient Policy 

Search for Robotics. Proc. of IEEE IROS. 

Deisenroth, M. P., Fox, D., & Rasmussen, C. E. (2015). Gaussian processes for data-efficient learning in robotics and 

control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2), 408-423. 
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Strategy 1: Learning the dynamical model 

state  dynamics noise next state 
Probabilistic 

model 

Optimal  

policy (in 

the model) 



Policy Search for damage recovery & adaptation 
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Model of the intact robot 



Black-DROPS + priors + identification 
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Chatzilygeroudis K, Mouret J.-B.  (2018) Using Parameterized Black-Box Priors to Scale Up 

Model-Based Policy Search for Robotics. Proc. of ICRA. 

Simulator / model Other dynamics next state 

probabilistic model 

policy 



Strategy 2: modelling the return + prior 

The MAP-Elites algorithm generates the search space (prior) 

➟ in simulation, with an intact robot 

➟many evaluations [simulation] 

➟“take the needles out of the haystack” 

➟provide an expected performance for the “needles”  

Prior-based Bayesian optimization does the online learning 

➟search only among good solutions (“needles”) 

➟ fast trial-and-error (thanks to pre-computed “needles”) 

➟ few evaluations [real robot] 

10 
Diversity Adaptation 

Jean-Baptiste Mouret Part B1 ResiBots

Figure 2: Concept of the “backbone algorithm” of the proposal, based on a division between offline exploration with an

evolutionary algorithm and fast, online learning with a Bayesian optimization algorithm.

• Challenge 2 (months 24 to 48): damage recovery in a multiple task (e.g. walking in every direction), in a

high-dimensional search space, with episodic learning, and simple reward.

• Challenge 3 (months 36 to 60): damage recovery in amultiple task (e.g. walking in every direction), in

ahigh-dimensional search space, with semi-episodic learning (the robot isnever put back in the initial

state), and simple reward.

• Challenge 4 (months 36 to 60): damage recovery in a multiple task (e.g. walking in every direction),

in a high-dimensional space, with semi-episodic learning, and with multiple sources of knowledge

(preliminary diagnosis, demonstrations) in addition to the reward.

Thefirst challenge is the most critical but we already obtained preliminary results that show that simulations of

theundamaged robot can guide a learning process for adamaged robot12. Wealso havepreliminary results in

“ toy problems” with Bayesian optimization.

Experimental setups. To ensure the generality of our results, we will perform each experiment with three

different setups (figure1). The various setups will allow us to evaluate how our methods scales up and ensure

that they are not tied to a particular type of robot or task. One of the main technical challenges of this project is

to implement our algorithm on these three very different robots and tasks, with different constraints.

• Wheeled robot + arm (7 degrees of freedom). Main task: amobile robot with a robotic arm has to grasp

balls and put them in abasket on top of the robot. This task corresponds to a vacuum cleaning robot (e.g.

a Roomba) that needs to clear the objects from the room before vacuum cleaning. Grasping will be made

easy by using the “ jamming gripper” (by Empire Robotics). Controller: dynamic motion primitives10;

damages: block a motor of the arm, break one gear of a motor (i.e., make the degree of uncontrolled);

reward: number of balls in the basket, measured by the robot (weight of the balls).

• Wheel-legged hybrid robot (30 degrees of freedom). Main task: locomotion in every direction; Controller:

non-linear oscillators9; damages: remove one leg, remove two legs, disconnect a motor, make one leg

shorter, makeone leg longer; reward: walking speed, measured onboard with aRGBD visual odometry

algorithm; This high-mobility robot is the kind of robot used for search and rescue missions.

• Crawling iCub (up to 53 degrees of freedom). Main task: crawling in every direction; Controller: Non-

linear oscillators5; damages: loosen several cables, block onemotor, disconnect one of the control board;

reward: external (measured with amotion capture system). The iCub robot is not a low-cost robot, but it

will allow us to demonstrate that our approach scales to advanced robots likehumanoids.

Challenge 1: resilience by fast learning in high-dimensional spaces

(1) Elite-based dimension reduction (Fig. 2, from A to B). In our recent work about the evolutionary origins

of modularity4, we proposed a variant of an evolutionary algorithm to visualize a high-dimensional search

space in a low-dimensional feature space. This algorithm searches for the best solution for each point of a

n-dimensional grid, whereeach dimension reflectsasalient feature of the solution. As a result, this algorithm

finds a large set of unique, high-performing solutions, each of them being the best of their family. The key

feature of this algor ithm is that it provides a low-dimensional picture of the whole search space, and not

only a few good solutions. In this project, we will adapt this algorithm to our experimental setup and improve

its efficiency with new heuristics (e.g., by starting with acrude approximation and refine it).

(2) Simulation-based priors (Fig. 2, fromB to C and D). Current experiments with Bayesian optimization start

with a model with a constant mean and a constant standard deviation14,16, that is without any task-specific prior

knowledge. As a result, many trials are used solely to obtain the overall shape of the search space. Here we will
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Strategy 2: computing a prior 
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Challenge: damaged 6-legged robot 
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• Controller : periodical signals (36 parameters) 

• No information about the damage 

Cully, A. and Clune, J. and Tarapore, D. and Mouret, J.-B. (2015). Robots that can adapt like 

animals. Nature. Vol 521 Pages 503-507. 

Strategy 2: prior + modelling the expected return 

parameters of the policy 

reward 

probabilistic model 
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• Controller : periodical signals (36 parameters) 

• No information about the damage 

Cully, A. and Clune, J. and Tarapore, D. and Mouret, J.-B. (2015). Robots that can adapt like 

animals. Nature. Vol 521 Pages 503-507. 

Strategy 2: modelling the expected return 



Planning (MCTS) + repertoire learning (priors) 

15 
K. Chatzilygeroudis, V. Vassiliades, and J.-B. Mouret (2018). Reset-free Trial-and-Error Learning for  

Data-Efficient Robot Damage Recovery. Robotics and Autonomous Systems. 
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What do you I want to achieve? 

Fast adaptation in the real world: a few minutes 

➟ Much more autonomy 

➟ Versatile robots for versatile missions 

➟ Animals vs “superhuman”   

 

Wall-e (2008) 

2001: A Space Odyssey (1968) 
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What do you I want to achieve? 

Fast adaptation in the real world: a few minutes 

➟ Much more autonomy 

➟ Versatile robots for versatile missions 

➟ More animals than “superhuman”   

 

Wall-e (2008) 
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1.Algorithms that can adapt with little data: most current learning does 

not really work on real machines & systems 

2. Algorithms that can explore with rare rewards (e.g., door opening): 

curious machines / exploration 

3. Prior knowledge is a key: from big data, models, engineering, … 

4. Probabilistic predictive models of the world: know what you do not 

know 

➟data-efficiency (search in the model) 

➟“passive” acquisition (unsupervised)  

➟“optimal” planning under uncertainty 

5. Safety during learning: for the robot & for the environment 

6.Continuous / long-term learning / avoid catastrophic forgetting 

What do we need in term of science? 

« Big-Data »  
Amount of data 

« Micro-data »  

Simulated 

world 

Real 

world 
1-20 trials 

A few minutes 



Difficulty = (Complexity of task) x (Complexity of Environment) x (Cost of mistake) 
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 Focus on the important questions:  

1. Autonomous robots are far from being able to “take over the world”  

2. but “dumb” robots will be deployed and are more dangerous 

• bad context awareness = bad decisions / accidents / biased decisions 

➟ a dumb robot is more dangerous than a “smart” one  

•  robots ~ pets: they should NOT be dangerous for the world 

What do we need from society? 

Big Hero 6 (2014) 



Conclusion 

 

We achieved a lot in machine learning (e.g., deep learning) 

… but this is not enough for robots (yet) 

➟ we need algorithms that allow robots to adapt in a few 

minutes / a few trials 

 

 We should be more afraid by “dumb robots” than from “smart 

robots”   
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? 
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• Videos & papers: http://members.loria.fr/jbmouret  

• ERC Project: http://www.resilient-robots.net  

• code (C++11): http://github.com/resibots 

• contact: jean-baptiste.mouret@inria.fr  

resibots

http://members.loria.fr/jbmouret
http://www.resilient-robots.net
http://www.resilient-robots.net
http://www.resilient-robots.net
http://github.com/resibots
http://github.com/resibots
mailto:jean-baptiste.mouret@inria.fr
mailto:jean-baptiste.mouret@inria.fr
mailto:jean-baptiste.mouret@inria.fr
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MAP-Elites: 6-legged locomotion 
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MAP-Elites: 6-legged locomotion 


