Perovskites promise boost for solar power technology
15 November 2019

An unexpected discovery by EU-funded researchers has opened up a new field of photovoltaic technology that promises a more efficient and economical way to convert solar energy into electrical power.

Cover image of Perovskites promise boost for solar power technology

If solar energy is to meet its potential for replacing fossil fuels, photovoltaic (PV) technology will have to be deployed far more rapidly than it is now. In 2017 solar PV accounted for barely 2 % of global electricity production.

The ERC-funded HYPER project set out to investigate several new materials that could be used to make solar cells more cheaply. Among them was a class of compounds known as perovskites, which were incorporated into solar cells by Japanese researchers a few years earlier. They were building on the dye-sensitized solar cells invented by Brian O'Regan and Michael Grätzel (also an ERC grantee).

‘We found that perovskites absorbed light incredibly strongly and worked well in thin-film photovoltaics,’ says grantee Henry Snaith of Oxford University. ‘I’d spent the previous ten years searching for materials that showed some promise and this one showed a lot of promise. It was in a completely different category to where the other emerging PV materials were at the time.’

Spin-off to exploit perovskite

It was soon apparent that cells with a perovskite layer performed far better than anyone had expected and the HYPER project dropped its other lines of enquiry to find out what these new materials could do. The discovery was published in Science in 2012. Two years earlier Snaith had founded a university spin-off company, Oxford PV, intending to exploit a niche market for semi-transparent solar cells incorporated into windows. But once the implications of the perovskite discovery became clear, the company abruptly changed direction.

‘We realised there was an opportunity to target the bigger PV market by combining perovskites with silicon,’ he says. ‘We can coat the perovskite cell on top of silicon and deliver a higher efficiency than the silicon itself.’

Oxford PV’s perovskite-silicon cells have now exceeded 28 % efficiency – the very best commercial silicon cells are around 25 % – and Snaith thinks 32 % will soon be within reach. More advanced cells, with two layers of perovskite, could approach 40 %.

$200 billion market

The company has attracted more than £100 million of equity capital and in 2016 acquired a redundant PV factory near Berlin. With the assistance of Swiss technology company Meyer Burger they are preparing to produce 156 mm square cells for industrial customers. This ‘cell foundry’ will have an annual capacity of 200 megawatts and is expected to be in production by 2020.

‘The potential market for this technology is the whole of the PV power market, currently at 100 gigawatts and $200 billion,’ Snaith says. ‘On a longer time-scale we may see perovskite PV power being generated everywhere.’

He next wants to develop cells solely based on perovskites, which would be much thinner and lighter than most cells used today. ‘It opens lots of opportunities for making more lightweight PV,’ he says. ‘Things like industrial roofing – there’s quite a lot of interest for a lighter weight PV that could be deployed in a roll, for instance.’ Such cells would also be useful for transport applications such as aircraft, drones and automobiles. Beyond the PV market, perovskites could be used to make efficient light-emitting displays.

The initial project funded by an ERC Starting Grant ended in 2016. An ERC Proof of Concept grant the then helped the Oxford scientists explore the potential of their discovery through the smaller NEM (New Energy Material) and PLE (Perovskite Light Emitters) projects.

‘It was really invaluable for kick-starting my activity,’ Snaith says of the ERC funding. ‘It made a very measurable difference to my ability to push ahead with this technology in competition with the rest of the world. It’s an example where applied and fundamental research are both really important and you have to be open to surprising things happening along the way.’

This article was first published on the Europa website Research and Innovation InfoCentre.

 

Project information

HYPER
Hybrid Photovoltaic Energy Relays
Researcher:
Henry James Snaith
Host institution:
The Chancellor, Masters and Scholars of the University of Oxford
,
United Kingdom
Call details
ERC-2011-StG_20101014, PE3
ERC funding
1 870 337 €